Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a^3}{c}=x;\dfrac{b^3}{a}=y;\dfrac{c^3}{b}=z\)
Suy ra \(\dfrac{a^3}{c}.\dfrac{b^3}{a}.\dfrac{c^3}{b}=xyz\Leftrightarrow xyz=\left(abc\right)^2=1\)
Vậy ta có \(\dfrac{c}{a^3}=\dfrac{1}{x};\dfrac{a}{b^3}=\dfrac{1}{y};\dfrac{b}{c^3}=\dfrac{1}{z}\)
Theo đề bài ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{xy+xz+yz}{xyz}=xy+xz+yz\)
Ta lại có \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=xyz-xz-yz-xy+x+y+z-1=1-\left(xz+yz+xy\right)+x+y+z-1=-\left(x+y+z\right)+\left(x+y+z\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)
_ x=1\(\Leftrightarrow\dfrac{a^3}{c}=1\Leftrightarrow a^3=c\left(1\right)\)
Tương tự:
y=1\(\Leftrightarrow\)\(b^3=a\)(2)
z=1\(\Leftrightarrow c^3=b\)(3)
Từ (1),(2),(3)
Vậy trong 3 số a,b,c luôn tồn tại một số là lập phương của một trong 2 số còn lại
Bài 1:
Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)
Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)
Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)
Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)
\(\Rightarrow 1-a^{1-a}\geq 0\)
\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)
\(\Rightarrow a^a\geq a\)
Tương tự: \(b^b\geq b\)
\(\Rightarrow a^ab^b\geq ab\) (đpcm)
Bài 2:
Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)
\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)
\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)
\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)
\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)
Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)
Tức là \(a-b; 3^a-3^b\) luôn cùng dấu
\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)
\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)
Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)
Do đó $(*)$ đúng, ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)
Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)
Bạn ghi nhầm đề bài thì phải, \(a,b,c\in Z\)* mới đúng
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(\Leftrightarrow\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}=0\Leftrightarrow2\left(\dfrac{a+b+c}{abc}\right)=0\Leftrightarrow a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=0\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Mà \(-3\left(a+b\right)\left(a+c\right)\left(b+c\right)⋮3\Rightarrow a^3+b^3+c^3⋮3\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq (1+1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
Theo đề bài \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Rightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\)
\(\Rightarrow\frac{c+a+b}{abc}=0\) mà \(a;b;c\ne0\Rightarrow abc\ne0\Rightarrow a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=-\left(a^3+b^3+c^3\right)\)
Mà \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) chia hết cho 3 nên \(-\left(a^3+b^3+c^3\right)\) chia hết cho 3
Nên \(a^3+b^3+c^3\) chia hết cho 3
Ta có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{1}{ab}+2.\dfrac{1}{ac}+2.\dfrac{1}{bc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\Leftrightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=0\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=0\Leftrightarrow\dfrac{c+b+a}{abc}=0\Leftrightarrow a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3=0\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b\right)=0\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)
Vì \(3abc⋮3\)
Suy ra a3+b3+c3\(⋮3\)
k cần giải nx nhá ~ mk giải đc rồi @