K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)

Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn 

Có ai giải rõ hơn k z ???

4 tháng 4 2016

1)a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1 

BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z 

<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà ) 

<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0 

<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM 

Dấu = xảy ra <=> x = y = z <=> a = b = c 

Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c 

- - - - - - - - - - - - -- - - - - -

DD
4 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2=2^2=4\)

\(\Leftrightarrow a^2+b^2\ge2\).

Dấu \(=\)khi \(a=b=1\).

b) \(\left(a^2-b^2\right)\ge0\Leftrightarrow a^4+b^4\ge2a^2b^2\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+2a^2b^2=\left(a^2+b^2\right)^2\ge2^2=4\)

\(\Leftrightarrow a^4+b^4\ge2\)

Dấu \(=\)khi \(a=b=1\).

c) Bạn làm tương tự. 

bạn j ơi a^2+b^2 có = 2 đâu

13 tháng 4 2019

a) \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Mà a + b + c = 3  \(\Rightarrow a=b=c=1\)

\(\Rightarrow M=1+2015+2020\)\(=4036\)

13 tháng 4 2019

b) \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

\(\Rightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)-\left(x+y\right)\left(x-y\right)\left(x+y\right)< 0\)

\(\Leftrightarrow\left(x-y\right)\left[x^2+y^2-\left(x+y\right)\left(x+y\right)\right]< 0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-x^2-2xy-y^2\right)< 0\)

\(\Leftrightarrow-2xy\left(x-y\right)< 0\)

Có \(x>y\Rightarrow x-y>0\)

\(\Rightarrow-2xy< 0\)

\(\Leftrightarrow xy>0\)

TH1: \(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)( thỏa mãn )

TH2:\(\orbr{\begin{cases}x< 0\\y< 0\end{cases}}\)( loại )

Vậy bđt được chứng minh

30 tháng 7 2017

giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^

xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html