Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2ab+c=\dfrac{4ab+1-2a-2b}{2}=\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}\)
Và: \(a+b=\dfrac{1-2c}{2}\)
\(\Rightarrow\left(a+b\right)^2=\dfrac{\left(2c-1\right)^2}{4}\)
Thế vô bài toán ta được
\(P=\dfrac{2ab+c}{\left(a+b\right)^2}.\dfrac{2bc+a}{\left(b+c\right)^2}.\dfrac{2ca+b}{\left(c+a\right)^2}\)
\(=\dfrac{\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}}{\dfrac{\left(2c-1\right)^2}{4}}.\dfrac{\dfrac{\left(2b-1\right)\left(2c-1\right)}{2}}{\dfrac{\left(2a-1\right)^2}{4}}.\dfrac{\dfrac{\left(2c-1\right)\left(2a-1\right)}{2}}{\dfrac{\left(2b-1\right)^2}{4}}\)
\(=\dfrac{4.4.4}{2.2.2}=8\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b
ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)
M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)
M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)
M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)
M=-1-1-1=-3
Vậy với a+b+c=0 thì M=-3
BĐT cần CM tương đương:
\(3-VT\ge1\)
\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)
\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)
\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)
Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)
... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng
=> BĐT trên đúng
=> đpcm
Dấu "=" xảy ra khi: a = b = c