\(a+b+c=0\)  và \(abc=11\)

\(a^3+b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

ta có a +b +c =0  => a+b=-c

ta có hằng đẳng thức a3+b3= (a3+b3) -3ab(a+b) 

ta đc a3+b3+c= a3+b3= (a+b)3 -3ab(a+b) +c3=-c3-3ab(-c)+c3=3abc

a3+b3+c3=3abc 

=> a3+b3+c=33

chúc em thi tôt...

3 tháng 7 2017

Kết quả hình ảnh cho a^3 + b^3 + c^3

Vậy a3 + b3 + c3 = 3abc 

=> a3 + b3 + c3 = 3.11

=> a3 + b3 + c3 = 33

10 tháng 7 2019

\(a+b+c=0\Rightarrow a+b=-c;a^3+b^3+c\left(a^2+b^2\right)-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2\right)-abc=\left(a+b\right)\left(a^2+b^2\right)+c\left(a^2+b^2\right)-\left(a+b\right)ab-abc=\left(a+b+c\right)\left(a^2+b^2\right)-\left(-abc\right)-abc=0+abc-abc=0+0=0\)

10 tháng 7 2019

Vẫn là suy ra từ giả thiết nhưng bài làm sẽ khác svtkvtm.

a + b + c = 0 => a + b = -c

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left[\left(a+b\right)^2-2ab\right]\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+c\left[\left(a+b\right)^2-2ab\right]\)

\(=-c\left(c^2-3ab\right)+c\left(c^2-2ab\right)-abc=0\) (phá tung mấy cái ngoặc ra rồi rút gọn thôi)

31 tháng 5 2020

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)

\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)

và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)

Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)

Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3

19 tháng 12 2017

nham nha mn, phai  laf 2(a^4+b^4)>=(a+b)(a^3+b^3)

18 tháng 12 2021

nứng cút

bạn lê mạnh quân ko trả lời thì bạn đừng chửi nhé

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

12 tháng 7 2016

Thế này nhé ^^

  • Ta có : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2\right)-bc-ac+c^2-3ab\right]\)

\(=\left[\left(a+b\right)+c\right].\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=a^3+b^3+c^3-3abc\)

  • \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

6 tháng 4 2017

1 bai thoi cung dc

28 tháng 7 2016

giúp vsssssssssss

13 tháng 10 2016

https://vn.answers.yahoo.com/question/index?qid=20110907041853AA9iaBQ