K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!

6 tháng 9 2017

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(=a^2.\left(a+b+c\right)-a^2b-abc+b^2c+b^3\)

\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab^2-abc-a^2b\)

\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2-ab+b^2\right)\)

\(=0\) ( Đpcm )

8 tháng 2 2020

Bạn từ chứng minh BĐT đầu bài.

a) Áp dụng: \(VT\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\) 

\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

b) Với abc = 1. Ta viết BĐT lại thành:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

Sử dụng cách chứng minh ở câu a.

c) Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\) thì xyz = 1; x, y, z > 0. Đưa về chứng minh:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)

Cách chứng minh tương tự câu b.

2 tháng 9 2018

ta có: (a+b+c)2 = a2 + b2 + c2

=> 2.(ab+ac+bc) = 0

ab + ac + bc = 0

=> 1/a + 1/b + 1/c = 0

Lại có: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right).\)

                                                                \(=0.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)=0\)

=> 1/a3 + 1/b3 + 1/c3  -3/abc = 0

=> 1/a3 + 1/b3 + 1/c3 = 3/abc

4 tháng 2 2017

Trước hết ta phải cần chứng minh \(a^3+b^3+c^3=3abc\)

Ta có

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^3=0^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b\right)+3\left(ab+ac\right)\left(a+b+c\right)=0\)

mà a + b + c = 0

và a + b = -c

Thay a + b = -c và a + b + c = 0 vào bt trên ta được

\(a^3+b^3+c^3-3abc+0=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mà abc = 12

\(\Rightarrow3abc=12.3=36\)

Hay \(a^3+b^3+c^3=36\)

Chúc bạn học tốt =))ok