\(A.B+C=0\) (A,B,C là các biểu thức)

Với B>0, C>0 thì ta có điều gì?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019
https://i.imgur.com/zmqmZ1u.jpg
21 tháng 2 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)

\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)

\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)

\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)

\(\Rightarrow M\le\frac{1}{3}\)

Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)

Vậy GTLN của M là 1/3

15 tháng 6 2019

Ta có : 

\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)

\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)

\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)

\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)

Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :

\(A+B=x\left(x^2-3y\right)+2y\)

\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)

\(\Rightarrow\)Các đa thức này là các số hữa tỉ  \(\left(đpcm\right)\)

30 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)

\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)

\(=2a\cdot2b=4ab=VP^2\)

\(\Rightarrow VT\le VP\) *ĐPCM*

a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)

b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)

c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)

d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)