K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 8 2020

Hai tam giác vuông ABM và ACN chung góc A nên đồng dạng

\(\Rightarrow\frac{AM}{AN}=\frac{AB}{AC}\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}\)

\(\Rightarrow\Delta AMN\sim\Delta ABC\Rightarrow\frac{MN}{BC}=\frac{AM}{AB}\)

Trong tam giác vuông ABM: \(cosA=\frac{AM}{AB}\Rightarrow\frac{AM}{AB}=cos45^0=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\frac{MN}{BC}=\frac{\sqrt{2}}{2}\Rightarrow MN=10\sqrt{2}\)

Hai tam giác AMN và ABC đồng dạng theo tỉ số \(k=\frac{\sqrt{2}}{2}\)

\(\Rightarrow S_{AMN}=k^2.S_{ABC}=\frac{1}{2}S_{ABC}\)

\(S_{BCMN}=S_{ABC}-S_{AMN}=S_{ABC}-\frac{1}{2}S_{ABC}=\frac{1}{2}S_{ABC}\)

\(\Rightarrow S_{AMN}=S_{BCMN}\)

NV
16 tháng 8 2020

Hai tam giác vuông ABE và ACF có góc A chung nên đồng dạng

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\) (c.g.c)

\(\Rightarrow\frac{EF}{BC}=\frac{AE}{AB}\)

Trong tam giác vuông ABE: \(cosA=\frac{AE}{AB}\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)

\(\Rightarrow\frac{EF}{BC}=\frac{1}{2}\Rightarrow BC=20\)

\(\Rightarrow\Delta AEF\) đồng dạng tam giác \(ABC\) theo tỉ số đồng dạng \(k=\frac{1}{2}\)

\(\Rightarrow S_{AEF}=k^2.S_{ABC}=25\)

11 tháng 8 2016

a, tam giác ABH có: góc  ABH=90 độ,vuông góc với AB 

Suy ra: AM.AB=AH^2(Đ/L)

CMTT tam giác AHC: AN.AC=AH^2(Đ/L)

cả hai diều suy ra:AM.AB=AN.AC

11 tháng 8 2016

phần b nghĩ ra chưa làm nốt cho

16 tháng 8 2017

A B C H N M

hình không đẹp lắm, mong cậu thông cảm.

Có : AH là đường cao của tam giác ABC=> goc AHB =900

Tam giác AHB vuông tại H có AM là đường cao

=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong

Tam giac AHC vuong tai H có AN là đường cao

=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong

Nen AM.AB =AN.AC

b,Tam giác AHB vuông tại H,=> cot B = BH/AH

Tam giác AHC vuông tại H => cotC = CH/AH

Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

a)

Xét tam giác $MAH$ và $HAB$ có:

\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)

Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)

Hoàn toàn tương tự:

\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)

\(\Rightarrow AN.AC=AM.AB\) (đpcm)

b)

Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)

Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)

\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)

Áp dụng công thức trên vào bài toán:

\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)

\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Hình vẽ:
Hệ thức lượng trong tam giác vuông

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Lời giải:

Xét tứ giác $BCDE$ có\(\widehat{BEC}=\widehat{BDC}=90^0\) nên $BCDE$ là tứ giác nội tiếp

\(\Rightarrow \widehat{AED}=\widehat{ACB}\)

Do đó \(\triangle ADE\sim \triangle ABC\) (g.g)

\(\Rightarrow \frac{AD}{AB}=\frac{DE}{BC}=\frac{AM}{AH}\) (trong đó $AM, AH$ tương ứng là đường cao của 2 tam giác $ADE, ABC$)

\(\Rightarrow \frac{DE}{BC}.\frac{AM}{AH}=\left(\frac{AD}{AB}\right)^2\)

\(\Rightarrow \frac{2S_{ADE}}{2S_{ABC}}=\cos ^2A\Rightarrow S_{ADE}=S_{ABC}\cos ^2A\)

\(\Rightarrow S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}(1-\cos ^2A)=S_{ABC}\sin ^2A\)

Ta có đpcm.

31 tháng 5 2018

Ảnh đây

31 tháng 5 2018

Sao tải ảnh mà tự nhiên lại không được