![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
Ta chứng minh bđt:\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)(1)
\(\Leftrightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Áp dụng\(\Rightarrow A\ge1+2+1=4\left(\text{đ}pcm\right)\)
b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(B=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)
\(B=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
Áp dụng bđt (1)\(\Rightarrow B\ge2+2+2=6\left(\text{đ}pcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
-Schwarz: 1/(a+b)+1/(a+c)+1/(b+c) >/ 9/2(a+b+c)=9/2=4,5>4 -> đpcm
-ta có VT=4(1-a)(1-b)(1-c)=4(b+c)(1-b)(1-c)=[4(b+c)(1-c)](1-b)
Áp dụng bdt cauchy dạng 4ab </ (a+b)^2
VT </ (b+c+1-c)^2(1-b)=(b+1)^2(1-b)=(b+1)[(1+b)(1-b)]=(b+1)(1-b^2) </ 1+b = a+2b+c (đpcm)
ai giúp mình với mai mình kiểm tra 1 tiết rồi