Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
= \(a^3+b^3+a^3-b^3=a^3+a^3=2a^3\)
\(\xrightarrow[]{}\) đpcm
b, Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(\left(a-b\right)^2+ab\right)\)
\(\xrightarrow[]{}\) đpcm
c, Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(\xrightarrow[]{}\) đpcm
Tham khảo nè!!
Câu hỏi của Phạm Thị Cẩm Huyền - Toán lớp 8 | Học trực tuyến
Chúc bn học tốt!!
Chứng minh đẳng thức:
1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải
2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp
3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b3 =vp
4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp
5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp
6) (a+b)3 =(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp
7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b3 =a3-3a2b+3ab2-b3=vp
Chứng minh rằng:
a) (a+b)(a2 - ab + b2) + (a-b)(a2 + ab + b2) = 2a3
b) a3 + b3 = (a+b)[ (a-b)2 + ab ]
a) \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3=VP\)
b) \(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]\)
\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=VP\)
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3\left(ĐPCM\right)\)
\(b,a^3+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\left(ĐPCM\right)\)
1)a2b+ab2=ab(a+b)=2ab
Ta có: (a-b)2\(\ge\)0
=>a2+b2\(\ge\)2ab
=>(a+b)2\(\ge\)4ab
=>22\(\ge\)4ab
=>2\(\ge\)2ab
Vậy...
2)a2b3+a3b2=ab(a2b+ab2)\(\le\)1.(a2b+ab2)(từ câu 1 có 2\(\ge\)2ab)
Chứng minh tiếp tục tương tự ý 1) thì max a2b3+a3b2=2
3)2(ab3+a3b)=(a+b)(ab3+a3b)=a2b3+a3b2+2a2b2\(\le\)2+2.12(Từ câu 2 max a2b3+a3b2=2 ; từ câu 1 thì từ câu 1 có 2\(\ge\)2ab)=4
=>ab3+a3b\(\le\)2
a) (a-b)3 - (a3 - b3)
= a3 - b3 - a3 +b3 =0
b) ( a+ b) . (a2 -ab +b2) + (a-b) .( a2+ab +b2)
=(a3 + b3) +(a3-b3) =a3 + b3+a3 -b3 =2a3
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
\(\left(a+b\right)^3+\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2+a^2-ab+b^2\right]\)
\(=\left(a+b\right)\left(a^2+2ab+b^2+a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(2a^2+ab+2b^2\right)\)