K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(\left(a+b\right)^3+\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2+a^2-ab+b^2\right]\)

\(=\left(a+b\right)\left(a^2+2ab+b^2+a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(2a^2+ab+2b^2\right)\)

10 tháng 6 2017

a, Ta có: \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

= \(a^3+b^3+a^3-b^3=a^3+a^3=2a^3\)

\(\xrightarrow[]{}\) đpcm

b, Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(\left(a-b\right)^2+ab\right)\)

\(\xrightarrow[]{}\) đpcm

c, Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(\xrightarrow[]{}\) đpcm

10 tháng 6 2017

Tham khảo nè!!

Câu hỏi của Phạm Thị Cẩm Huyền - Toán lớp 8 | Học trực tuyến

Chúc bn học tốt!!

8 tháng 6 2016

nhan vao 2 ve la song

8 tháng 6 2016

có thể trình bày rõ ra đc ko bạn

11 tháng 7 2016

Chứng minh đẳng thức:

1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải

2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp

3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b=vp

4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp

5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp

6) (a+b)=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp

7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b=a3-3a2b+3ab2-b3=vp

7 tháng 8 2018

a)  \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

           \(=a^3+b^3+a^3-b^3=2a^3=VP\)

b)  \(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

           \(=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]\)

          \(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=VP\)

7 tháng 8 2018

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=a^3+b^3+a^3-b^3=2a^3\left(ĐPCM\right)\)

\(b,a^3+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)

\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\left(ĐPCM\right)\)

8 tháng 5 2017

1)a2b+ab2=ab(a+b)=2ab

Ta có: (a-b)2\(\ge\)0

=>a2+b2\(\ge\)2ab

=>(a+b)2\(\ge\)4ab

=>22\(\ge\)4ab

=>2\(\ge\)2ab

Vậy...

2)a2b3+a3b2=ab(a2b+ab2)\(\le\)1.(a2b+ab2)(từ câu 1 có 2\(\ge\)2ab)

Chứng minh tiếp tục tương tự ý 1) thì max a2b3+a3b2=2

3)2(ab3+a3b)=(a+b)(ab3+a3b)=a2b3+a3b2+2a2b2\(\le\)2+2.12(Từ câu 2 max a2b3+a3b2=2 ; từ câu 1 thì từ câu 1 có 2\(\ge\)2ab)=4

=>ab3+a3b\(\le\)2

10 tháng 8 2016

a)    (a-b)- (a3 - b3)

        = a3 - b3 - a+b3 =0

b)    ( a+ b) . (a-ab +b2) + (a-b) .( a2+ab +b2)

          =(a3 + b3) +(a3-b3) =a+ b3+a-b=2a3

 

11 tháng 8 2016

câu a bạn làm sai rồi

Bài 2: 

a+b+c+d=0

nên b+c=-(a+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)

\(=\left(b+c\right)\left(3ad-3bc\right)\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa