Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c1,
a,1+2+3+1=7
b,3+5+8+36+9=61
c,1+2+3+4+5+6+7+8+9=45
c2,
a,(1+1)+(2+3)=7
b,(3+5+8)+(36+9)=61
c,(9+1)+(8+2)+(7+3)+(6+4)+5=45
cich cho minh nha
\(\frac{a}{4}=\frac{b}{6}\)\(,\)\(\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\left(a=\frac{2b}{3}\right)\)\(,\)\(\left(b=\frac{5c}{8}\right)\)
\(\Rightarrow3a=2b\)\(,\)\(8b=5c\)
\(\Rightarrow b=\frac{3a}{2}\)\(,\)\(c=\frac{12a}{5}\)
\(\Rightarrow a=10\)\(,\)\(b=15\)\(,\)\(c=24\)
\(\frac{a}{4}=\frac{b}{6}.\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\left(3a=2b,8b=5c\right)\)
\(\Rightarrow b=\frac{3a}{2}.c=\frac{12a}{5}\)
\(\Rightarrow a=10,b=15,c=24\)
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
a)
1 + 5 = 6
6 + 5 = 11
5 + 4 = 9
9 + 3 = 12
6 + 3 = 9
b)
6 - 2 = 4
3 - 2 = 1
7 - 4 = 3
9 - 5 = 4
7 - 7 = 0
k nhé:))
Câu 1:
(x-18)-42=(23-43)-(70+x)
x-18-42=-20-70-x
x-18-42+20+70+x=0
2x+30=0
2x=-30
x=-15
Câu 2 : Tính tổng
a,1+(-2)+3+(-4)+...+19+(-20)
Từ 1 đến -20 có 20 số hạng
=> Có 10 nhóm
=>(1-2)+(3-4)+...+(19-20)
=-1-1-1-....-1
=-1.10
=-10
b,c,d,e làm tương tự ta được :
b) -50
c) -24
d) -99
e) -100
Câu 3 : Tìm x
a)\(x\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-7\end{cases}}}\)
Vậy : x={0;-7}
b)\(\left(x+12\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-12\\x=3\end{cases}}}\)
Vậy:....
c)\(\left(-x+5\right)\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=3\end{cases}}}\)
Vậy:......
d)\(x\left(2+x\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}}\)
Vậy:.....
e) \(\left(x-1\right)\left(x+2\right)\left(-x-3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}}\)
Vậy:........
Câu 4 :
a) ab+ac
=a(b+c)
b) ab-ac+ad
=a(b-c+d)
c) ax-bx-cx+dx
=x(a-b-c+d)
d) a(b+c)-d(b+c)
=(b+c)(a-d)
e) ac-ad+bc-bd
=a(c-d)+b(c-d)
=(c-d)(a+b)
f) ax+by+bx+ay
=x(a+b)+y(a+b)
=(a+b)(x+y)
#H