K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)

\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)

\(=-3ab-6a^2b^2+6a^2b^2\)

= - 3ab

15 tháng 8 2016

HELP MEEEEEEEEEEEEEEEEEEEEEEEEEEEE!

17 tháng 8 2015

(a+b)3=(a+b)(a+b)(a+b)

=a(a+b)(a+b)+b(a+b)(a+b)

=(a2+ab)(a+b)+(ab+b2)(a+b)

=(a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b3)

=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3

=a3+a2b+a2b+a2b+ab2+ab2+ab2+b3

=a3+3a2b+3ab2+b3

vậy (a+b)= a3 +3a2b +3ab+ b3 =>dpcm

 

28 tháng 7 2019

a) \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

28 tháng 7 2019

b) \(a^4+a^3+a^3b+a^2b\)

\(=a^2\left(a^2+a+ab+b\right)\)

\(=a^2\left[a\left(a+b\right)+\left(a+b\right)\right]\)

\(=a^2\left(a+1\right)\left(a+b\right)\)

28 tháng 7 2019

Phân tích đa thức thành nhân tử

a) x3 - 2x2 + x

= x (x2 - 2x + 1) = x (x - 1)2

b) a4 + a3 + a3b + a2b

= a3 (a + 1) + a2b (a + 1) = (a + 1) (a3 + a2b)

= a2 (a + 1)(a + b)

c) a3 + 3a2 + 4a + 12

= a2 (a + 3) + 4 (a + 3)

= (a + 3) (a2 + 4)

28 tháng 7 2019

a. = x( x\(^2\) - 2x + 1 )

d . = ( x - y + 4 +2x + 3y - 1 ) ( x - y + 4 - 2x - 3y + 1 )

= ( 3x + 2y + 3 ) ( -x - 4y + 5 )

e. = (3x)\(^3\) + 3.(3x)\(^2\).1 + 3.3x.1\(^2\) + 1\(^3\)

= ( 3x + 1 )\(^3\)

11 tháng 7 2016

Chứng minh đẳng thức:

1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải

2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp

3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b=vp

4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp

5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp

6) (a+b)=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp

7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b=a3-3a2b+3ab2-b3=vp

NV
20 tháng 9 2020

\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)

\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

b/

\(\left(a+b\right)^3+\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\)

\(=2a^3+6ab^2=2a\left(a^2+3b^2\right)\)

c/

\(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=6a^2b+2b^3=2b\left(b^2+3a^2\right)\)

d/

\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-\left(3a^2b+3ab^2\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

e/

\(a^3-b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=\left(a-b\right)^3+3ab\left(a-b\right)\)