Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sau khi rút gọn ta có:
a2+b2+c2+abc+2≥ab+bc+ac+a+b+c
hay
2(a2+b2+c2)+2abc+4≥(ab+bc+ac+a+b+c).2
Áp dụng kết quả sau
a2+b2+c2+2abc+1≥2(ab+bc+ac) (1)
cần chứng minh
a2+b2+c2+3≥2a+2b+2c (2)
hay (a−1)2+(b−1)2+(c−1)2≥0 (đúng)
dấu = xảy ra khi a=b=c=1
Từ (1) và (2) ta có đpcm
Theo nguyên lý Dirichlet, ta thấy rằng trong ba số a,b,c sẽ có hai số hoặc cùng ≥1 hoặc cùng ≤1. Giả sử hai số đó là a,b khi đó:
(a−1)(b−1)≥0.
Từ đây, bằng cách sử dụng hằng đẳng thức:
a2+b2+c2+2abc+1−2(ab+bc+ca)=(a−b)2+(c−1)2+2c(a−1)(b−1)≥0
Ta thu được ngay bất đẳng thức (1), phép chứng minh hoàn tất.
Lời giải 2: Ta sẽ sử dụng phương pháp dồn biến để chứng minh bài toán. Giả sử c là số bé nhất và đặt:
f(a,b,c)=a2+b2+c2+2abc+1−2(ab+bc+ca)
Ta có:
f(a,b,c)−f(ab−−√,ab−−√,c)=(a√−b√)2(a+b+2ab−−√−2c)≥0
Do đó f(a,b,c)≥f(ab−−√,ab−−√,c), vậy ta chỉ cần chứng minh f(ab−−√,ab−−√,c)≥0.
Thật vậy, nếu đặt t=ab−−√ thì ta có:
f(t,t,c)=2t2+c2+2t2c−2(t2+2tc)+1=(c−1)2+2c(t−1)2≥0
\(1.a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
=\(a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
=\(a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
=\(a^4-b^4\)=\(\left(a^2-b^2\right)\left(a^2+b^2\right)\)
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+2abc\)
\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(abc+b^2c\right)+\left(ca^2+abc\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+c^2+bc+ca\right)\)
\(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)
\(=\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)