Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng; Với a>1; b>1. Tìm GTNN \(\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(a+b\right)^2}{a+b-2}\ge8\) ta cm nó như sau:
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b\right)-16\Leftrightarrow\left(a+b-4\right)^2\ge0\)
Ta có: \(VT=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4a-4b+8\)
\(\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}.4\left(a-1\right)}-4a-4b+8\)
\(=2.2a+2.2b-4a-4b+8\)
\(=\left(4a-4a\right)+\left(4b-4b\right)+8=8^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\frac{a^2}{b-1}=4\left(b-1\right);\frac{b^2}{a-1}=4\left(a-1\right)\)
\(\Leftrightarrow a^2=b^2=4\Leftrightarrow a=b=2\)(t/m)
\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)
\(\Rightarrow P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)
\(\Rightarrow p_{min}=8\) khi \(a=b=1\)
Từ \(a+b+c=1\) thế vào biểu thức sau
\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\left(\frac{a+b+c}{a}-\frac{a}{a}\right)\left(\frac{a+b+c}{b}-\frac{b}{b}\right)\left(\frac{a+b+c}{c}-\frac{c}{c}\right)\)
\(=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)(1)
Với a,b,c>0 , Áp dụng bất đẳng thức AM-GM (cauchy) cho hai số không âm ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)(2)
Từ (1) và (2) suy ra \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge\frac{8abc}{abc}=8\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)
có ở trong câu hỏi tương tự nhé
\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé
Điều kiện a,b>0 và a+b=1
Có \(\frac{3}{a^2+b^2+ab}\ge\frac{3}{a^2+b^2+\frac{a^2+b^2}{2}}=\frac{3}{\frac{3\left(a^2+b^2\right)}{2}}=\frac{2}{a^2+b^2}\)
Do đó \(\frac{1}{ab}+\frac{3}{a^2+b^2+ab}\ge\frac{2}{2ab}+\frac{2}{a^2+b^2}=2\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\ge2\left(\frac{\left(1+1\right)^2}{a^2+b^2+2ab}\right)=\frac{8}{\left(a+b\right)^2}=8\left(đpcm\right)\)
Bài 1:Thêm đk a > b > 0
\(VT=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cô si cho 3 số dương ta có đpcm.
Đẳng thức xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)
Bài 2: BĐT \(\Leftrightarrow\left(a-b\right)+\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (Thêm 1 vào hai vế +bớt + thêm b)
\(\Leftrightarrow\left(a-b\right)+\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (tách \(b+1=\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)\))
Áp dụng BĐT Cô si cho 4 số dương ta thu được đpcm.
Đẳng thức xảy ra khi \(a-b=\frac{1}{2}\left(b+1\right)=\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)
\(\Leftrightarrow a=2;b=1\) (chị giải rõ ra nha, em làm tắt thôi)
Bài 3 để sau ạ, có lẽ cần thêm đk b > 0. Khi đó a/ b > 1 tức là a > b và > 0
Dự đoán điểm rơi tại a = 1; b = 1/2
Em nghĩ ra rồi nhưng ko chắc đâu.
Bài 3: Dễ thấy b > 0 => a > b > 0
Trước tiên cần giảm bậc cái đã:D
\(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6.1}=3a^2\)
Đẳng thức xảy ra khi a = 1 (1)
Do vậy: \(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3a^2}{4ab-4b^2}\). Do a > b > 0. Chia hai vế cho b2 ta được:
\(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3\left(\frac{a}{b}\right)^2}{4.\frac{a}{b}-4}=\frac{3t^2}{4t-4}\) với \(t=\frac{a}{b}>1\)
Ta cần chứng minh \(\frac{3t^2}{4t-4}\ge3\Leftrightarrow\frac{t^2}{4t-4}\ge1\Leftrightarrow t^2-4t+4\ge0\Leftrightarrow\left(t-2\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi a = 2b tức là theo (1) suy ra \(b=\frac{1}{2}\)
Ta có đpcm.
\(\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\left(BĐTbun\right)\)
TA cm : \(\frac{\left(a+b\right)^2}{a+b-2}\ge8\) . Đặt a + b = t
BPT <=> \(\frac{t^2}{t-2}\ge8\Leftrightarrow t^2\ge8t-16\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\)
BĐt luôn đúng với mọi t
Dấu ''= '' xảy ra khi \(\int^{\frac{a}{b-1}=\frac{b}{a-1}}_{a+b=4}\Rightarrow a=b=2\)