Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(\ge a+1-b+\frac{1-a}{4a}+b^2=a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2\)(do \(a+b\ge1\))
\(=\left(a+\frac{1}{4a}\right)+b^2-b+\frac{1}{4}+\frac{1}{2}\)
\(\ge2\sqrt{a\cdot\frac{1}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\ge2\cdot\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi \(a=b=\frac{1}{2}\)
Do \(0< a< 1\Rightarrow b>0\)
\(A=2a+\frac{b}{4a}+b^2=\frac{3a}{2}+\frac{a}{2}+\frac{b}{4a}+b^2\ge\frac{3a}{2}+3\sqrt[3]{\frac{ab^3}{8a}}=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(a=b=\frac{1}{2}\)
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=\left(b^2+\frac{b}{4a}+\frac{a}{2}\right)+\frac{3}{2}a\)
\(\ge3\sqrt[3]{b^2.\frac{b}{4a}.\frac{a}{2}}+\frac{3}{2}a=\frac{3}{2}a+\frac{3}{2}b=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
\(A=2a+\frac{b}{4a}+b^2\)
Mà \(a+b\ge1\Leftrightarrow b\ge1-a\). Suy ra \(A\ge2a+\frac{1-a}{4a}+b^2=2a+\frac{1}{4a}-\frac{1}{4}+b^2=a+\frac{1}{4a}+a+b^2-\frac{1}{4}\)
Mà \(a+b\ge1\Leftrightarrow a\ge1-b\). Suy ra
\(A\ge a+\frac{1}{4a}+b^2-b+\frac{3}{4}=a+\frac{1}{4a}+b^2-b+\frac{1}{4}+\frac{1}{2}\)
Áp dụng bđt Cosi: \(\Rightarrow A\ge2+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\Leftrightarrow A\ge\frac{3}{2}\)
Dấu = xảy ra tại a=b=1/2