Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có: \(A=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=\frac{x^2}{x}+\frac{ax}{x}+\frac{bx}{x}+\frac{ab}{x}\)
\(=x+a+b+\frac{ab}{x}\)
Áp dụng bđt Cô si với 2 số dương là x và \(\frac{ab}{x}\) ta có:
\(x+\frac{ab}{x}\ge2.\sqrt{x.\frac{ab}{x}}=2.\sqrt{ab}\)
Do đó, \(A\ge2.\sqrt{ab}+a+b=\sqrt{ab}+a+\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi \(\begin{cases}x=\frac{ab}{x}\\x>0\end{cases}\)\(\Leftrightarrow x^2=ab\Leftrightarrow x=\sqrt{ab}\)
Vậy Min A = \(\left(\sqrt{a}+\sqrt{b}\right)^2\) khi \(x=\sqrt{ab}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(A=\frac{\left(x+1\right)\left(x+3\right)}{x}\)
\(A=\frac{x^2+4x+3}{x}\)
\(A=x+4+\frac{3}{x}\)
Áp dụng bất đẳng thức Cô-si :
\(A\ge2\sqrt{\frac{3x}{x}}+4=2\sqrt{3}+4\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{x}\Leftrightarrow x^2=3\Leftrightarrow x=\sqrt{3}\)( thỏa )
b. \(B=\frac{\left(x-y\right)\left(x-3y\right)}{xy}\)
\(B=\frac{x^2-4xy+3y^2}{xy}\)
\(B=\frac{x}{y}-4+\frac{3y}{x}\)
Áp dụng bất đẳng thức Cô-si :
\(B\ge2\sqrt{\frac{3xy}{xy}}-4=2\sqrt{3}-4\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{y}=\frac{3y}{x}\Leftrightarrow x^2=3y^2\Leftrightarrow\frac{x}{y}=\sqrt{3}\Leftrightarrow x=y\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A là biểu thức cần CM
ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh )
Áp dụng BĐT quen thuộc x² + y² ≥ 2xy
a^4 + b² ≥ 2a²b (1)
b^4 + c² ≥ 2b²c (2)
c^4 + a² ≥ 2c²a (3)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)
Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)
\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)
Vậy ......................
Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng 2 bđt sau \(\hept{\begin{cases}a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\\\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\end{cases}}\)(tự chứng minh nhé)
\(A=\left(\frac{1}{x}+x\right)^2+\left(\frac{1}{y}+y\right)^2\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+x+y\right)^2}{2}\ge\frac{\left(\frac{4}{x+y}+1\right)^2}{2}=\frac{\left(4+1\right)^2}{2}=\frac{25}{2}\)
Dấu "=" tại x = y = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
ban chon dung nguoi roi
A=[x^2+(a+b)x+ab]/x=x+ab/x+(a+b)
=\(\left(\sqrt{x}-\frac{\sqrt{ab}}{\sqrt{x}}\right)^2+2\sqrt{ab}+\left(a+b\right)\)
Min A=\(\left(\sqrt{a}+\sqrt{b}\right)^2\)
khi x=\(\sqrt{ab}\)