K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Ta có BĐT cần chứng minh 

<=>\(a^3+b^3\ge\frac{\left(a+b\right)^3}{4}\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)

<=>\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

Áp dụng BĐT cô-si, ta có \(a^3+a^3+b^3\ge3a^2b;b^3+b^3+a^3\ge3ab^2\Rightarrow a^3+b^3\ge a^2b+ab^2\)

=> BĐT cần chứng minh luôn đúng 

^_^

18 tháng 5 2017

câu này sai rồi. với a = b = c = 1 thì BĐT không đúng.

25 tháng 10 2019

Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được

VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)

Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được

(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)

Dấu'=' khi a=b=c

25 tháng 9 2017

Chebyshev, Vasc là cái gì vậy ._. lớp 9 học cái đó rồi á ._.

25 tháng 9 2017

ahihi tui nhìn nhầm cách đó sai rồi cho qua đi :))

25 tháng 9 2016

bài này hả chịu thui

bik làm sao dc 

để nhớ lại đã

25 tháng 9 2016

bn ơi bn viết

chữ nhỏ quá đó 

bn ấn vào chữ x2

à bn mình nhìn rõ

nhưng có chữ 

ko đọc được