Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)
\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)
\(c,\) Để P nguyên
\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)
=> \(x-3\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)
\(=>x=\left\{2;4;5;1;7;-1\right\}\)
Câu 6:
ĐKXĐ: \(x\ne-\dfrac{1}{3}\)
Để \(\dfrac{9x+4}{3x+1}\in Z\) thì \(9x+4⋮3x+1\)
=>\(9x+3+1⋮3x+1\)
=>\(1⋮3x+1\)
=>\(3x+1\in\left\{1;-1\right\}\)
=>\(3x\in\left\{0;-2\right\}\)
=>\(x\in\left\{0;-\dfrac{2}{3}\right\}\)
mà x nguyên
nên x=0
Câu 2:
a: ĐKXĐ: \(x\notin\left\{2;-2;0\right\}\)
b: \(A=\left(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x-2}\right)\cdot\dfrac{x^2-4x+4}{4x}\)
\(=\left(\dfrac{1}{x+2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x-2}\right)\cdot\dfrac{\left(x-2\right)^2}{4x}\)
\(=\dfrac{x-2+2x+x+2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x}\)
\(=\dfrac{4x\left(x-2\right)}{4x\left(x+2\right)}=\dfrac{x-2}{x+2}\)
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
a) Vì mỗi đơn thức là một đa thức nên ta có thể viết bất kỳ đơn thức nào ở câu này.
Ví dụ: P(x) = xy2 (Vì đơn thức cũng là một đa thức)
b) Có vô số đa thức không phải là đơn thức.
Ví dụ: 2x + 3y; x2 + 2y
a: ĐKXĐ: \(x\notin\left\{5;-5\right\}\)
b: \(P=\dfrac{x-5+2x+10-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{1}{x+5}\)
a) Ta có: x4 - 1 = (x2 + 1)(x2-1), trong đó : x2 + 1 > 0, với mọi x.
Vậy điều kiện : x2 – 1 ≠ 0
x2 – 1 = (x – 1)(x + 1) ≠ 0 ⇒ x ≠ ±1
Do x2 + 1 > 0 với mọi x nên P < 0 với mọi x ≠ ±1
\(P=\frac{a+2}{a+3}-\frac{5}{\left(a+3\right)\left(a-2\right)}-\frac{a}{a^2-2a}\)
a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-3\\a\ne2\end{cases}}\)
b)\(=\frac{a+2}{a+3}-\frac{5}{\left(a+3\right)\left(a-2\right)}-\frac{a}{a\left(a-2\right)}\)
\(=\frac{a\left(a-2\right)\left(a+2\right)}{a\left(a+3\right)\left(a-2\right)}-\frac{5a}{a\left(a+3\right)\left(a-2\right)}-\frac{a\left(a+3\right)}{a\left(a+3\right)\left(a-2\right)}\)
\(=\frac{a\left(a^2-4\right)}{a\left(a+3\right)\left(a-2\right)}-\frac{5a}{a\left(a+3\right)\left(a-2\right)}-\frac{a^2+3a}{a\left(a+3\right)\left(a-2\right)}\)
\(=\frac{a^3-4a-5a-a^2-3a}{a\left(a+3\right)\left(a-2\right)}\)
\(=\frac{a^3-a^2-12a}{a\left(a+3\right)\left(a-2\right)}=\frac{a\left(a^2-a-12\right)}{a\left(a+3\right)\left(a-2\right)}\)
\(=\frac{a^2-4a+3a-12}{\left(a+3\right)\left(a-2\right)}=\frac{a\left(a-4\right)+3\left(a-4\right)}{\left(a+3\right)\left(a-2\right)}\)
\(=\frac{\left(a-4\right)\left(a+3\right)}{\left(a+3\right)\left(a-2\right)}=\frac{a-4}{a-2}\)
c) \(8a=8a^2\)
⇔ \(8a^2-8a=0\)
⇔ \(8a\left(a-1\right)=0\)
⇔ \(\orbr{\begin{cases}8a=0\\a-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=0\left(ktm\right)\\a=1\left(tm\right)\end{cases}}\)
Với a = 1 =>\(P=\frac{1-4}{1-2}=\frac{-3}{-1}=3\)
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2x+2}\)
ĐKXĐ la B>=0 bn nhé