![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
=> \(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
=>\(\frac{a^2+b^2}{a^2-b^2}=\frac{\left(kb\right)^2+b^2}{\left(kb\right)^2-b^2}=\frac{k^2b^2+b^2}{k^2b^2-b^2}=\frac{b^2\left(k^2+1\right)}{b^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(1)
=> \(\frac{c^2+d^2}{c^2-d^2}=\frac{\left(kd\right)^2+d^2}{\left(kd\right)^2-d^2}=\frac{k^2d^2+d^2}{k^2d^2-d^2}=\frac{d^2\left(k^2+1\right)}{d^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(2)
Từ (1) và (2) => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Sửa đề CMR : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{vì }\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\right)\)
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{đpcm}\right)\)
b) |17x - 5| - |17x + 5| = 0
=> |17x - 5| = |17x + 5|
=> \(\orbr{\begin{cases}17x-5=17x+5\\17x-5=-17x-5\end{cases}}\Rightarrow\orbr{\begin{cases}0x=10\\34x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0 là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Suy ra: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\frac{2a+b+c}{a+b+c}=\frac{a+a+b+c}{a+b+c}=1+\frac{a}{a+b+c}\)
\(\frac{2b+c+d}{b+c+d}=\frac{b+b+c+d}{b+c+d}=1+\frac{b}{b+c+d}\)
\(\frac{2c+d+a}{d+a+c}=\frac{c+c+d+a}{d+a+c}=1+\frac{c}{d+a+c}\)
\(\frac{2d+a+b}{d+a+b}=\frac{d+d+a+b}{d+a+b}=1+\frac{d}{d+a+b}\)
Lại có:
M = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)
=> M \(>\frac{a}{a+b+c+d}+\frac{b}{b+c+d+a}+\frac{c}{d+a+c+b}+\frac{d}{d+a+b+c}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\)
=> M > 1 (1)
Và :
M = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)
Mà \(\frac{a}{a+b+c}< 1;\frac{b}{b+c+c}< 1;\frac{c}{d+a+c}< 1;\frac{d}{d+a+b}< 1\)
=> M \(< \frac{a+d}{a+b+c+d}+\frac{b+a}{b+c+d+a}+\frac{c+b}{d+a+c+b}+\frac{d+c}{a+b+c+d}\)
=> M \(< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}\)
=> M \(< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
=> M< 2 (2)
Từ (1) và (2) ta có 1 < M < 2. => M ko phải là số tự nhiên. Mà 1 là số tự nhiên => A ko phải là số tự nhiên
Vậy ..................(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Nguyễn Nguyên Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)(1)
Từ \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}=\left(\frac{a}{b}\right)^3\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ \Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a+b+c}{b+c+d}\cdot\dfrac{a+b+c}{b+c+d}\cdot\dfrac{a+b+c}{b+c+d}\\ =\dfrac{a}{b}\cdot\dfrac{c}{d}\cdot\dfrac{b}{c}=\dfrac{a}{d}\) => Điều pải chứng minh