Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
Em kiểm tra lại đề ở tỉ số đầu tiên
\(\dfrac{2a+2b-2c}{c}=\dfrac{2b-2c+2a}{a}\)
Hay là: \(\dfrac{2a+2b-2c}{c}=\dfrac{2b+2c-2a}{a}\)
Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)
Vậy \(P=9\)
Trừ cả 3 đi 1 ta còn
\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
Vói a+b+c=1 thì P=-1
Với a+b+c khác 0 thì
\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)
\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)
Vậy............
\(\frac{a+b+c-2d}{a}=\frac{b+d+a-2c}{b}=\frac{b+d+c-2a}{c}=\frac{a+c+d-2b}{d}\)
\(=\frac{\left(a+b+c-2d\right)+\left(b+d+a-2c\right)+\left(b+d+c-2a\right)+\left(a+c+d-2b\right)}{a+b+c+d}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\)
\(\Leftrightarrow a=b=c=d\).
\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{d}\right)\left(1+\frac{d}{a}\right)=2^4=16\)
+) x + b + c ≠ 0
Ta có :
\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}\)
\(\Rightarrow\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)
\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)=> 2a = 2b = 2c ( do a + b + c ≠ 0 )
\(\Rightarrow a=b=c\Rightarrow P=\left(1+\frac{c}{c}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{a}{a}\right)=2.2.2=8\)
+) a + b + c = 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{0}{0}\left(\text{vô lý}\right)\)
Vậy P chỉ nhận 1 giá trị là P = 8