\(A=\)\(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

a)2A=1+1/2^1+1/2^2+...+1/2^98

  2A-A=1+1/2^1+1/2^2+...+1/2^98-(1/2^1+1/2^2+...+1/2^99)

A=1+1/2^1+1/2^2+...+1/2^98-1/2^1-1/2^2-...-1/2^99

A=1-1/2^99

28 tháng 3 2019

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^{^2}}+...+\frac{1}{3^{98}}\)

\(\Leftrightarrow3A-A=1-\frac{1}{3^{99}}\)

\(\Leftrightarrow2A=1-\frac{1}{3^{99}}\)

\(\Leftrightarrow A=\left(1-\frac{1}{3^{99}}\right)\div2\)

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)