Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c=0 => (a+b+c)^2=0 <=> a^2+b^2+c^2+2(ab+bc+ca)=0
<=> 2+2(ab+bc+ca)=0 => ab+bc+ca=-1
(ab+bc+ca)^2=(ab)^2+(bc)^2+(ca)^2+2ab^2c+2abc^2+2a^2bc=(ab)^2+(bc)^2+(ca)^2+2abc(a+b+c)
=> (ab)^2+(bc)^2+(ca)^2 = (-1)^2 = 1
(a^2+b^2+c^2)^2 = a^4+b^4+c^4+2[(ab)^2+(bc)^2+(ca)^2] = a^4+b^4+c^4 + 2
<=>4=a^4+b^4+c^4+2 => a^4+b^4+c^4 = 2
Bạn kiểm tra lại có sai chỗ nào không nhé
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\) (cộng 3 vế với 1)
TH1: \(a+b+c=0\)
Khi đó: \(M=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
TH2: \(a=b=c\) (ko thỏa mãn a,b,c đôi 1 khác nhau)
Vây M = -1
Chúc bạn học tốt.
ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2.\left(a+b+c\right)}{a+b+c}.\)
Nếu \(a+b+c\ne0\)thì \(\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=> a + b = 2c
b+c = 2a
=> a-c = 2.(c-a)
=> c=a ( trái với đề bài)
=> a + b +c = 0
\(\Rightarrow M=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{c+b}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{c}=-1\)
a+b+c = 0 <=> (a+b+c)^2 = 0
<=> 2(ab+bc+ca) = 0 - (a^2+b^2+c^2) = 0 - 1 = -1
<=> ab+bc+ca = -1/2
<=> (ab+bc+ca)^2 = 1/4
<=> a^2b^2+b^2c^2+c^2a^2 = 1/4 - 2abc.(a+b+c) = 1/4 - 0 = 1/4
Có : a^2+b^2+c^2 = 1
<=> (a^2+b^2+c^2) = 1
<=> A = a^4+b^4+c^4 = 1 - 2.(a^2b^2+b^2c^2+c^2a^2) = 1 - 2.1/4 = 1/2
Vậy A = 1/2
k mk nha
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.
em khong biet
Đặt \(p=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)
\(=>abc.P=\text{ab(a-b) + bc(b-c) + ca(c-a)}\)
\(=>abc.P=a^2b-ab^2+b^2c-bc^2+ca\left(c-a\right)\)
\(=>abc.P=b\left(a^2-c^2\right)-b^2\left(a-c\right)+ca\left(c-a\right)\)
\(=>abc.P=b\left(a-c\right)\left(a+c\right)-b^2\left(a-c\right)-ca\left(a-c\right)\)
\(=>abc.P=\left(a-c\right)\left(ab+bc-b^2-ca\right)\)
\(=>abc.P=\left(a-c\right)\left[a\left(b-c\right)-b\left(b-c\right)\right]\)
\(=>abc.P=\left(a-c\right)\left(b-c\right)\left(a-b\right)\)
\(=>P=\frac{\left(a-c\right)\left(b-c\right)\left(a-b\right)}{abc}\)
Đặt \(Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(=>\left(a-b\right)\left(b-c\right)\left(c-a\right).Q=\text{ c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c) }\)
\(=\text{= c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c) }\)
\(\text{= c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c) }\)
\(=\text{ c(c-a)(2b-a-c) + b(a-b)(a+b-2c) }\)
\(=\text{3bc(c-a) – 3bc(a-b) }\text{= 3bc(b+c-2a) }\text{= 3bc(-a-2a) = -9abc }\)
\(=>Q=\frac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
Vậy A=P.Q=9