K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Giúp tớ gấp với ạ!!!

2 tháng 8 2018

a)Ta có : 9(a + b)2 - 4(a - 2b)

= [3(a + b) - 2(a - 2b)].[3(a + b) + 2(a - 2b)]

= (3a + 3b - 2a + 4b)(3a + 3b + 2a - 4b)

= (a + 7b)(5a - b)

28 tháng 9 2018

\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1\)

\(=\left(2x+1\right)^2\)

\(1+12x+36x^2\)

\(=1+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

16 tháng 8 2018

a) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2=\left(2x-3\right)^2\)

b) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)

c) \(1+12x+36x^2=1^2+2.6x.1+\left(6x\right)^2=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2=\left(3x-4y\right)^2\)

f) \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4=-\left(16a^4b^6+24a^5b^5+9a^6b^4\right)\)

                             \(=-\left[\left(4a^2b^3\right)^2+2.4a^2b^3.3a^3b^2+\left(3a^3b^2\right)^2\right]\)

                              \(=-\left(4a^2b^3+3a^3b^2\right)^2\)

h) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\) \(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2.y+y^2=\left(5x^2-y\right)^2\)

29 tháng 6 2019

a/ 9x2-12xy+4y2 = (3x - 2y)2

b/ 25x2-10x+1 = (5x - 1)2

c/ 9x2-12x+4 = (3x - 2)2

d/ 4x2+20x+25 = (2x + 5)2

e/ x4-4x2+4 = (x- 2)2

29 tháng 6 2019

a/\(\left(3x-2y\right)^2\)

b/\(\left(5x-1\right)^2\)

c/\(\left(3x-2\right)^2\)

d/\(\left(2x+5\right)^2\)

e/\(\left(x-2\right)^2\)

a) Ta có: \(\left(4x^2-12x+9\right)-1\)

\(=\left(2x-3\right)^2-1^2\)

\(=\left(2x-3-1\right)\left(2x-3+1\right)\)

\(=\left(2x-4\right)\left(2x-2\right)\)

\(=4\left(x-2\right)\left(x-1\right)\)

b) Ta có: \(\left(\frac{x^2}{4}+2xy+4y^2\right)-25\)

\(=\left[\left(\frac{x}{2}\right)^2+2\cdot\frac{x}{2}\cdot2y+\left(2y\right)^2\right]-5^2\)

\(=\left(\frac{x}{2}+2y\right)^2-5^2\)

\(=\left(\frac{x}{2}+2y-5\right)\left(\frac{x}{2}+2y+5\right)\)

c) Ta có: \(1+12x+35x^2\)

\(=35x^2+12x+1\)

\(=35x^2+5x+7x+1\)

\(=5x\left(7x+1\right)+\left(7x+1\right)\)

\(=\left(7x+1\right)\left(5x+1\right)\)

d) Ta có: \(9x^2-24xy+15y^2\)

\(=9x^2-9xy-15xy+15y^2\)

\(=9x\left(x-y\right)-15y\left(x-y\right)\)

\(=\left(x-y\right)\left(9x-15y\right)\)

\(=3\left(x-y\right)\left(3x-5y\right)\)

e) Ta có: \(25x^2-20xy+3y^2\)

\(=25x^2-15xy-5xy+3y^2\)

\(=5x\left(5x-3y\right)-y\left(5x-3y\right)\)

\(=\left(5x-3y\right)\left(5x-y\right)\)

f) Ta có: \(24x^4-10x^2y+y^2\)

\(=24x^4-4x^2y-6x^2y+y^2\)

\(=4x^2\left(6x^2-y\right)-y\left(6x^2-y\right)\)

\(=\left(6x^2-y\right)\left(4x^2-y\right)\)

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

1 tháng 10 2020

a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)

TH1 : x = 12 ; TH2 : x = 2 

b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

TH1 : x = 8 ; TH2 : x = -3 

c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)

TH1 : x = -1/2 ; TH2 : x = 7/2

d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)

Tương tự HĐT thôi :)

1 tháng 10 2020

a) x2 - 12x - 2x + 24 = 0

<=> x( x - 12 ) - 2( x - 12 ) = 0

<=> ( x - 12 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)

b) x2 - 5x - 24 = 0

<=> x2 + 3x - 8x - 24 = 0

<=> x( x + 3 ) - 8( x + 3 ) = 0

<=> ( x + 3 )( x - 8 ) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

c) 4x2 - 12x - 7 = 0

<=> 4x2 + 2x - 14x - 7 = 0

<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0

<=> ( 2x + 1 )( 2x - 7 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)

d) x3 + 6x2 + 12x + 8 = 0

<=> ( x + 2 )3 = 0

<=> x + 2 = 0

<=> x = -2

e) ( x + 2 )2 - x2 + 4 = 0

<=> x2 + 4x + 4 - x2 + 4 = 0

<=> 4x + 8 = 0

<=> 4x = -8

<=> x = -2

f) 2( x + 5 ) = x2 + 5x

<=> x2 + 5x - 2x - 10 = 0

<=> x( x + 5 ) - 2( x + 5 ) = 0

<=> ( x + 5 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0

<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0

<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0

<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0

<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0

<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0

<=> ( 3x + 13 )( 13x - 37 ) = 0

<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)

n) x2 - 6x + 4 = 0

<=> ( x2 - 6x + 9 ) - 5 = 0

<=> ( x - 3 )2 - ( √5 )2 = 0

<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0

<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)

1 tháng 10 2020

a) \(x^2-12x-2x+24=0\)

\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)

b) \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

c) \(4x^2-12x-7=0\)

\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)

d) \(x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Rightarrow x=-2\)

1 tháng 10 2020

e) \(\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow4x+8=0\)

\(\Rightarrow x=-2\)

f) \(2\left(x+5\right)=x^2+5x\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)

n) \(x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2-5=0\)

\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)