Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^4+5x^3+2x^2\right)+\left(2x^3+10x^2+4x\right)+\left(2x^2+10x+4\right)=0\)
\(\Leftrightarrow x^2\left(x^2+5x+2\right)+2x\left(x^2+5x+2\right)+2\left(x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(voly\right)\\x^2+5x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+5x+2=0\)
\(\Leftrightarrow x=\dfrac{-5+17}{2}\) or \(x=\dfrac{-5-\sqrt{17}}{2}\)
Vậy ...
a, \(x^4-5x^3+2x^2+10x+2=0\)
\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)
\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)
Vì \(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)
Các câu còn lại tương tự!
Chúc bạn học tốt!!!
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
x4+7x3+14x2+14x+4
=x4+7x3+4x2+10x2+14x+4
=(x4+4x2+4)+(7x3+14x)+10x2
=(x2+2)2+7x(x2+2)+10x2
=(x2+2)2+2x(x2+2)+5x(x2+2)+10x2
=(x2+2)(x2+2+2x)+5x(x2+2+2x)
=(x2+2+2x)(x2+2+5x)
Tìm x
x3-x2-14x+24=0
<=> x3-3x2+2x2-6x-8x+24=0
<=> x2(x-3)+2x(x-3)-8(x-3)=0
<=> (x-3)(x2+2x-8)=0
<=> (x-3)(x2-2x+4x-8)=0
<=>(x-3)(x-2)(x+4)=0
<=> x-3=0 hay x-2=0 hay x+4=0
<=> x=3 hay x=2 hay x=-4
S={3;2;-4}
\(7x^2-14x=0\)
\(\Rightarrow7x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)