\(a=73a+27a+100b\) với\(a+b=41\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a=73a+27a+100b

=100a+100b

=100(a+b)

\(=100\cdot41=4100\)

14 tháng 3 2018

a) \(\frac{31}{23}-\left(\frac{7}{23}+\frac{8}{23}\right)\)

\(=\frac{31}{23}-\frac{15}{23}\)

\(=\frac{16}{23}\)

b) \(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)

\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)

\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)

\(=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)

\(=\frac{1}{3}-1+1\)

\(=\frac{1}{3}\)

c) \(\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{52}-\frac{3}{11}\right)\)

\(=\frac{38}{45}-\frac{8}{45}+\frac{17}{52}+\frac{3}{11}\)

\(=\frac{30}{45}+\frac{17}{52}+\frac{3}{11}\)

\(=\frac{2}{3}+\frac{17}{52}+\frac{3}{11}\)

\(=\frac{104+51}{156}+\frac{3}{11}\)

\(=\frac{155}{156}+\frac{3}{11}\)

\(=\frac{156}{156}-\frac{1}{156}+\frac{3}{11}\)

\(=1-\frac{1}{156}+\frac{3}{11}\)

\(=1-\left(\frac{11-468}{1716}\right)\)

\(=1-\frac{-457}{1716}\)

\(=1+\frac{457}{1716}\)

\(=\frac{2173}{1716}\)

14 tháng 3 2018

a)31/23-(7/32+8/23)=31/23-7/32-8/23=(31/23-8/23)-7/32=1-7/32=25/32

17 tháng 4 2018

a) 7/15-(2/15-12/18)

=7/15-2/15+2/3

=5/15+2/3

=1/3+2/3

=1

b)(7/41- 4/9) - (3/19 + 7/41) + (4/9 - 16/19)

=7/41 - 4/9 - 3/19 - 7/41 + 4/9 + 16/19

=(7/41 - 7/41) - (4/9 - 4/9) - (3/19 + 16/19)

= -1

17 tháng 4 2018

b) 7/41 - 4/9 - 3/19 - 7/41 + 4/9 + 16/19

= (7/41 - 7/41 ) - (4/9 - 4/9 ) + ( 3/19 + 16/19 )

= 0 - 0 + 1

= 1

22 tháng 2 2020

\(A=\frac{5}{13}+\frac{-5}{7}+\frac{-20}{41}+\frac{8}{13}+\frac{-21}{41}\)

\(\Leftrightarrow A=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-20}{41}+\frac{-21}{41}\right)+\frac{-5}{7}\)

\(\Leftrightarrow A=1+\left(-1\right)+\frac{-5}{7}\)

\(\Leftrightarrow A=0+\frac{-5}{7}=\frac{-5}{7}\)

Vậy A = \(\frac{-5}{7}\)

B= \(\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{7}{15}\)

\(\Leftrightarrow B=\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{-4}{9}+\frac{7}{15}\)

\(\Leftrightarrow B=\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{8}{15}+\frac{7}{15}\right)+\frac{-2}{11}\)

\(\Leftrightarrow B=-1+1+\frac{-2}{11}\)

\(\Leftrightarrow B=0+\frac{-2}{11}\)

\(\Leftrightarrow\) \(B=\frac{-2}{11}\)

Vậy \(B=\frac{-2}{11}\)

@@ Học tốt

Chiyuki Fujito

K cần tk nhá

22 tháng 2 2020

Thanks bn nha

17 tháng 5 2018

Giải:

a) \(A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{-20}{41}+\dfrac{5}{13}+\dfrac{-21}{41}\)

\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{5}{13}+\dfrac{-21}{41}+\dfrac{-20}{41}\)

\(\Leftrightarrow A=\dfrac{5}{13}\left(\dfrac{5}{7}+1\right)+\dfrac{-41}{41}\)

\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{12}{7}+\left(-1\right)\)

\(\Leftrightarrow A=\dfrac{60}{91}+\left(-1\right)=-\dfrac{31}{91}\)

Vậy ...

b) \(B=\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{12}{11}-\dfrac{5}{7}.\dfrac{7}{11}\)

\(\Leftrightarrow B=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{12}{11}-\dfrac{7}{11}\right)\)

\(\Leftrightarrow B=\dfrac{5}{7}.\dfrac{7}{11}\)

\(\Leftrightarrow B=\dfrac{5}{11}\)

Vậy ...

c) \(C=\dfrac{-2}{3}+\dfrac{-5}{7}+\dfrac{2}{3}+\dfrac{-2}{7}\)

\(\Leftrightarrow C=\left(\dfrac{-2}{3}+\dfrac{2}{3}\right)+\left(\dfrac{-2}{7}+\dfrac{-5}{7}\right)\)

\(\Leftrightarrow C=0+\left(-1\right)=-1\)

Vậy ...

1 tháng 4 2017

\(\frac{3}{4}\)

11 tháng 3 2017

d)

Ta có: \(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

...

\(\dfrac{1}{99}>\dfrac{1}{100}\)

\(\dfrac{1}{100}=\dfrac{1}{100}\)

\(\Rightarrow S=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{99}+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)\(\Rightarrow S>\dfrac{1}{2}\)

11 tháng 3 2017

các con trên ???

20 tháng 3 2017

d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B

cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A

Suy ra B>A(chuc ban hoc goi nhe)