![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{33-12\sqrt{6}}+\sqrt{15+6\sqrt{6}}=\sqrt{24-2.2\sqrt{6}.3+9}+\sqrt{6+2.\sqrt{6}.3+9}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}+3\right)^2}=\left|2\sqrt{6}-3\right|+\left|\sqrt{6}+3\right|=2\sqrt{6}-3+\sqrt{6}+3=3\sqrt{6}\)
b) \(\dfrac{\sqrt{99}}{\sqrt{11}}+\dfrac{\sqrt{28}}{\sqrt{7}}-\sqrt{\sqrt{81}}=\sqrt{\dfrac{99}{11}}+\sqrt{\dfrac{28}{7}}-\sqrt{9}=\sqrt{9}+\sqrt{4}-\sqrt{9}=\sqrt{4}=2\)
a) \(\sqrt{33-12\sqrt{6}}\) + \(\sqrt{15+6\sqrt{6}}\)
= \(\sqrt{9-2.3.2\sqrt{6}+24}\)+\(\sqrt{9+2.3\sqrt{6}+6}\)
= \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)+\(\sqrt{\left(3+\sqrt{6}\right)^2}\)
=\(\left|3-2\sqrt{6}\right|+\left|3+\sqrt{6}\right|\)
=\(2\sqrt{6}-3+3+\sqrt{6}\)
=\(\sqrt{6}\)
b)\(\dfrac{\sqrt{99}}{\sqrt{11}}\)+\(\dfrac{\sqrt{28}}{\sqrt{7}}\)\(-\sqrt{\sqrt{81}}\)
= \(\sqrt{\dfrac{99}{11}}+\sqrt{\dfrac{28}{7}}-3\)
=\(\sqrt{9}+\sqrt{4}-3\)
= 3+2-3
= 2
![](https://rs.olm.vn/images/avt/0.png?1311)
A= \(\sqrt{12}-\sqrt{75}+3\sqrt{7+4\sqrt{3}}\)
= \(\sqrt{12}-\sqrt{75}+3\sqrt{4+2\cdot2\sqrt{3}+3}\)
= \(2\sqrt{3}-5\sqrt{3}+3\sqrt{\left(2+\sqrt{3}\right)^2}\)
= \(2\sqrt{3}-5\sqrt{3}+3\left|2+\sqrt{3}\right|\)
= \(2\sqrt{3}-5\sqrt{3}+3\left(2+\sqrt{3}\right)\)
= \(2\sqrt{3}-5\sqrt{3}+6+3\sqrt{3}\)
= 6
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: \(A=\left(3\sqrt{7}+2\right)\cdot\sqrt{67-12\sqrt{7}}\)
Ta có: \(A=\left(3\sqrt{7}+2\right)\cdot\sqrt{67-12\sqrt{7}}\)
\(=\left(3\sqrt{7}+2\right)\cdot\sqrt{63-2\cdot3\sqrt{7}\cdot2+4}\)
\(=\left(3\sqrt{7}+2\right)\cdot\sqrt{\left(3\sqrt{7}-2\right)^2}\)
\(=\left(3\sqrt{7}+2\right)\cdot\left|3\sqrt{7}-2\right|\)
\(=\left(3\sqrt{7}+2\right)\left(3\sqrt{7}-2\right)\)(Vì \(3\sqrt{7}>2\))
\(=63-4=59\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có B = 7 − 5 2 3 + 19 − 6 2 = ( 1 − 2 ) 3 3 + ( 3 2 − 1 ) 2 = 1 − 2 + 3 2 − 1 = 2 2 .