
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a+b=10\) và \(ab=4\)
1. Có: \(A=a^2+b^2=\left(a+b\right)^2-2ab=10^2-2.4=92\)
2. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.4.10=880\)
3. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=92^2-2.4^2=8432\)
4. \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)=92.880-4^2.10=80800\)

a/
\(\Leftrightarrow2a^4+2b^4\ge a^4+b^4+ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
\(\Rightarrow\) BĐT đã cho đúng
Dấu "=" xảy ra khi \(a=b\)
b/ \(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với mọi a;b dương)
\(\Rightarrow\) BĐT đã cho đúng
c/ Chắc là \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng

Ta có
\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)
Thay a=0,5 vào a^2+1/a^2 ta được
\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)
Làm tương tự với các câu còn lại

Theo đề ta có:
a+b+c=0 => c=-(a+b) (1)
Thay (1) vao a^3+b^3+c^3 ta có:
a3+b3+[-(a+b)]3=3ab[-(a+b)]
<=>a3+b3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.
b) có a+b+c = 0
=> a2+b2+c2+2(ab+bc+ac) = 0
mà a2+b2+c2 = 2
=> ab+bc+ac = -1
=> a2b2+b2c2+a2c2 + 2ab2c+2a2bc+2abc2 = 1
=>a2b2+b2c2+a2c2 + 2abc(b+a+c) = 1
=>a2b2+b2c2+a2c2 = 1
Ta bìn phong cái a2+b2+c2 len
đk là
a4+b4+c4 + 2a2b2+2a2c2+2b2c2=4
=> a4+b4+c4 + 2(a2b2+a2c2+b2c2) = 4
mà ở trên là a2b2+b2c2+a2c2 = 1
=> a4+b4+c4 +1 =4
a4+b4+c4 = 3 D
k giùm nha!!!
a^4+a^3+a^2+a=a^10
a4 + a3 + a2 + a
= a3( a + 1 ) + a( a + 1 )
= ( a + 1 )( a3 + a )
= a( a + 1 )( a2 + 1 )