Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2
= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
P/s: Tham khảo nhé
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)
\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)
Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)
Hay \(A>0\)(đpcm)
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
@Hà Nhung Huyền Trang
Lời giải:
$5a^2+2b^2=11ab$
$\Leftrightarrow 5a^2+2b^2-11ab=0$
$\Leftrightarrow (5a^2-10ab)-(ab-2b^2)=0$
$\Leftrightarrow 5a(a-2b)-b(a-2b)=0$
$\Leftrightarrow (a-2b)(5a-b)=0$
Do $a>2b>0$ nên $a-2b>0$. Do dó $5a-b=0$
$\Leftrightarrow b=5a$. Khi đó:
$A=\frac{4a^2-5b^2}{a^2+2ab}=\frac{4a^2-5(5a)^2}{a^2+2a.5a}=\frac{-121a^2}{11a^2}=-11$