Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+............+\dfrac{1}{4^{100}}\)
\(4A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+..........+\dfrac{1}{4^{99}}\)
\(4A-A=\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{99}}\right)-\left(\dfrac{1}{4}+\dfrac{1}{4^2}+.....+\dfrac{1}{4^{100}}\right)\)
\(3A=1-\dfrac{1}{4^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{4^{100}}}{3}\)
~ Chúc bn học tốt ~
Bài 2:
a: =>3/4x=-3/5-1/2=-11/10
\(\Leftrightarrow x=\dfrac{-11}{10}:\dfrac{3}{4}=\dfrac{-11}{10}\cdot\dfrac{4}{3}=-\dfrac{44}{30}=-\dfrac{22}{15}\)
b: \(\Leftrightarrow x+\dfrac{3}{4}x=\dfrac{1}{3}+\dfrac{5}{4}=\dfrac{19}{12}\)
=>7/4x=19/12
=>x=19/21
c: \(\Leftrightarrow-\dfrac{2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)
=>-4/3x=-1/3-1/6=-1/2
=>x=1/2:4/3=1/2x3/4=3/8
Bài 1
\(\dfrac{1}{7}:\dfrac{5}{17}-\dfrac{3}{2}.\left(\dfrac{1}{6}-\dfrac{7}{12}\right)\)
\(\dfrac{1}{7}.\dfrac{17}{5}-\dfrac{3}{2}.\left(-\dfrac{5}{12}\right)\)
\(\dfrac{17}{35}-\left(-\dfrac{5}{8}\right)\)
\(\dfrac{17}{35}+\dfrac{5}{8}\)
\(\dfrac{311}{280}\)
a, A = 4 + 4^2 + 4^3 + ... + 4^n
=> 4A = 4.(4 + 4^2 + 4^3 + ... + 4^n)
=> 4A = 4^2 + 4^3 + 4^4 + ... + 4^n+1
=> 3A = 4A - A = (4^2 + 4^3 + 4^4 + ... + 4^n+1) - ( 4 + 4^2 + 4^3 + ... + 4^n)
=> 3A = 4^n+1 - 4
=> A = \(\frac{4^{n+1}-4}{3}\)
Vậy A = ..................
b, B = 1 + 3 + 3^2 + ... + 3^100
=> 3B = 3.(1 + 3 + 3^2 + ... + 3^100)
=> 3B = 3 + 3^2 + 3^3 + ... + 3^101
=> 2B = 3B - B =(3 + 3^2 + 3^3 + ... + 3^101) -(1 + 3 + 3^2 + ... + 3^100)
=> 2B = 3^101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
Vậy B = ......................
A = 4 + 4^2 + 4^3 + ... + 4^n
4A = 4^2 + 4^3 + 4^4 + ... + 4^n+1
4A - A = ( 4^2 + 4^3 + 4^4 + ... + 4^n+1 ) - ( 4 + 4^2 + 4^3 +...+4^n)
3A = 4^n+1 - 4
A = 4^n+1 - 4/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
a) \(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
b) Ta có : A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
2, tìm x thuộc Z biết :
a, x^2 -(-3 )^2 =16
x^2-9 = 16
x^2 = 25
=> x = 5
b, x^2 + (-4) ^2 =0
x^2 + 16 = 0
x^2 = -16
=> x= -4
A=1+4+42+43+44+........+42015
4A=4(A=1+4+42+43+44+........+42015)
4A=4+42+43+44+45+........+42016
4A-A=(4+42+43+44+45+........+42016)-(1+4+42+43+44+........+42015)
3A=42016-1
A=(42016-1):3
\(A=4+4^2+4^3+...+4^{19}+4^{20}\)
\(4A=4\cdot\left(4+4^2+4^3+...+4^{20}\right)\)
\(4A=4^2+4^3+...+4^{21}\)
\(4A-A=4^2+4^3+4^4+...+4^{21}-4-4^2-4^3-...-4^{20}\)
\(3A=4^{21}-4\)
\(A=\dfrac{4^{21}-4}{3}\)
____________
\(B=1+3+3^2+...+3^{99}\)
\(3B=3\cdot\left(1+3+3^2+....+3^{99}\right)\)
\(3B=3+3^2+3^3+....+3^{100}\)
\(3B-B=\left(3+3^2+3^3+....+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(2B=3^{100}-1\)
\(B=\dfrac{3^{100}-1}{2}\)
Các bn giúp mk với