Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a:b=\(\frac{2}{7}\)=>a=\(\frac{2}{7}\)*b
Ta có:\(\frac{a+35}{b}\)=\(\frac{11}{14}\)
=>(a+35)*14=11b
=>14a+490=11b
=>14*\(\frac{2}{7}\)*b+490=11b
=>4b+490=11b
=>490=11b-4b
=>490=7b
=>b=490:7
=>b=70
=>a=70*\(\frac{2}{7}\)
=>a=20
Vậy a=20;b=70(Đề là thêm 35 đơn vị vào a;còn lại giữ nguyên)
Hình như bạn nhầm đề bài, khả năng là \(13a+b+2c=0\), nếu không có một giới hạn gì cho $c$, khi đó \(f(-2)f(3)\) không thể chỉ nhỏ hơn hoặc bằng $0$
Ta có \(\left\{\begin{matrix} f(-2)=4a-2b+c\\ f(3)=9a+3b+c\end{matrix}\right.\Rightarrow f(-2)+f(3)=13a+b+2c\)
\(\Leftrightarrow f(-2)+f(3)=0\)
Nếu một trong hai số bằng $0$ thì \(f(-2)f(3)=0\) $(1)$
Nếu hai số đều khác $0$ thì \(f(-2),f(3)\) trái dấu , suy ra \(f(-2)f(3)<0(2)\)
Từ \((1),(2)\Rightarrow f(-2)f(3)\leq 0\) (đpcm)
Mình giải được phần 1 rồi nhưng không biết cách viết bài giải để gửi cho bn :))), theo mình thì phần 1 bạn chuyển căn thứ nhất với căn thứ 3 thành 1 cặp, căn thứ hai với căn thứ tư thành một cặp sau đó nhân liên hợp nhé!