\(A=4+2^3+2^4+2^5+...+2^{2003}+2^{2004}\)

Chứng minh rằng A

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Vì A là lũy thừa của 2

14 tháng 2 2016

Ta có : \(A=4+2^3+2^4+2^5+...+2^{2003}+2^{2004}\)

=> \(A=2^2+2^3+2^4+...+2^{2003}+2^{2004}\)

=> \(2A=2^3+2^4+2^5+...+2^{2004}+2^{2005}\)

=> \(2A-A=\left(2^3+2^4+...+2^{2005}\right)-\left(2^2+2^3+...+2^{2004}\right)\)

=> \(A=2^{2005}-2^2\) 

(làm đc từng này thôi ^^)

11 tháng 9 2020

Sửa \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)

Giả sử ngược lại thì ta có \(\frac{a}{2003}=\frac{b}{2004}\)và ta cần chứng minh \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)

Đặt \(\frac{a}{2003}=\frac{b}{2004}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\end{cases}}\)

Khi đó \(\frac{a+2003}{a-2003}=\frac{2003k+2003}{2003k-2003}=\frac{2003\left(k+1\right)}{2003\left(k-1\right)}=\frac{k+1}{k-1}\)(1)

\(\frac{b+2004}{b-2004}=\frac{2004k+2004}{2004k-2004}=\frac{2004\left(k+1\right)}{2004\left(k-1\right)}=\frac{k+1}{k-1}\)(2)

Từ (1) và (2) => \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)

=> đpcm

Không hiểu chỗ nào thì ib nhé :)

11 tháng 9 2020

\(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\Leftrightarrow\frac{\frac{a}{2003}+1}{\frac{a}{2003}-1}=\frac{\frac{b}{2004}+1}{\frac{b}{2004}-1}\)

Đặt \(\frac{a}{2003}=x,\frac{b}{2004}=y\Rightarrow\frac{x+1}{x-1}=\frac{y+1}{y-1}\Leftrightarrow\left(x+1\right)\left(y-1\right)=\left(x-1\right)\left(y+1\right)\)
\(\Leftrightarrow xy-x+y-1=xy+x-y-1\Leftrightarrow2x=2y\Leftrightarrow x=y\)-----> Xooooong :)))

28 tháng 6 2015

A=4+22+23+...+220

Đặt B=22+23+...+220

=>2B=23+24+...+221

=>2B-B=221-22=221-4

=>A=4+B=4+221-4=221

=>A là lũy thừa của 2(ĐPCM)

b)A=3+32+33+...+3100

=>3A=32+33+...+3101

=>3A-A=3101-3

=>2A=3101-3

=>2A+3=3101-3+3=3101

Vậy 2A+3 là lũy thừa của 3(ĐPCM)

28 tháng 6 2015

a/

\(2A=8+2^3+...+2^{21}\)

\(2A-A=A=2^{21}+8-4-2^2=2^{21}\)

b/

\(3B=3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=2B=3^{101}-3\)

\(\Rightarrow2B+3=3^{101}\)

15 tháng 12 2018

Câu 1,

\(S=1+2+2^2+...+2^7\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)

\(=3+2^2.3+2^4.3+2^6.3\)

\(=3\left(1+2^2+2^4+2^6\right)⋮3\)

Nên S chia hết cho 3

Câu 2 ,

\(A=5+5^2+5^3+...+5^{20}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{19}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{19}.6\)

\(=6\left(5+5^3+...+5^{19}\right)⋮6\)

Nên A chia hết cho 6

15 tháng 12 2018

\(S=1+2+2^2+2^3+....+2^7\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

\(S=3+2^2.\left(1+2\right)+.....+2^6.\left(1+2\right)\)

\(S=3+2^2.3+.....+2^6.3\)

\(\Rightarrow S=3.\left(1+2^2+...+2^6\right)\)

\(\Rightarrow S⋮3\)

2 tháng 8 2018

KO AI TRẢ LỜI THẾ MH TRẢ LỜI LUN !

\(a,4^{72}v\text{à}8^{48}\)

TA CÓ:\(4^{72}=\left(2^2\right)^{72}=2^{144}\)

\(8^{48}=\left(2^3\right)^{48}=2^{144}\)

\(\Rightarrow4^{72}=8^{48}\)

\(b,5^{127}v\text{à}2^{254}\)

TA CÓ:\(2^{252}2^{2\times127}=\left(2^2\right)^{127}=4^{127}\)

\(5^{127}>4^{127}\left(v\text{ì5>4}\right)\)\(5^{127}>4^{127}\left(v\text{ì}5>4\right)\)

\(\Rightarrow5^{127}>2^{254}\)

2 tháng 8 2018

a) Ta có : 472 = 43.24 = (43)24 = 6424

                848 = 82.24 = (82)24 = 6424

Ta thấy : 6424 = 6424 => 472 = 848

b) Ta có : 2254 = 22.127 = (22)127 = 4127

Vì 5 > 4 => 5127 > 2254

30 tháng 7 2018

a)\(4^{72}=\left(4^3\right)^{24}=64^{24}\)

\(8^{48}=\left(8^2\right)^{24}=64^{24}\)

\(\Rightarrow4^{72}=8^{48}\)

30 tháng 7 2018

a) \(4^{72}=\left(2^2\right)^{72}=2^{144}\)

\(8^{48}=\left(2^3\right)^{48}=2^{144}\)

mà \(2^{144}=2^{144}\)=> \(4^{72}=8^{48}\)

b) \(2^{252}=\left(2^2\right)^{126}=4^{126}\)

mà \(4^{126}< 5^{127}\)=> \(5^{127}>2^{252}\)

14 tháng 2 2018

5A=1/5=2/5^2+......+11/5^11
4A=1/5+1/5^2+......+1/5^11-11/5^12
20A=1+1/5+1/5^2+.....+1/5^10-11/5^11
16A=1-1/5^11+11/5^12-11/5^11
vi 1-1/5^11<1;11/5^12-11/5^11<0
16A<1
A<1/16 
k cho minh nhe

6 tháng 8 2017

avt1245482_60by60.jpgBonking

bn tham khảo đây nhé :

Câu hỏi của Khanh Mai Lê - Toán lớp 6 - Học toán với OnlineMath

mình tính siêu đúng

...

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

20 tháng 6 2018

a) \(625^4:25^7\)

\(=\left[25^2\right]^4:25^7\)

\(=25^8:25^7\)

\(=25\)

b)\(\left(100^5-89^5\right).\left(6^8-8^6\right).\left(8^2-4^3\right)\)

\(=\left(100^5-89^5\right).\left(6^8-8^6\right).\left[\left(2^3\right)^2-\left(2^2\right)^3\right]\)

\(=\left(100^5-89^5\right).\left(6^8-8^6\right).\left[2^6-2^6\right]\)

\(=\left(100^5-89^5\right).\left(6^8-8^6\right).0\)

\(=0\)