K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: 3(x+1)-(4x-3)=5

\(\Leftrightarrow3x+3-4x+3-5=0\)

\(\Leftrightarrow-x+1=0\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(2x+1\right)\left(x-1\right)=x^2-2x+1\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy: S={1;-2}

c) Ta có: |-5x|=3x-16(*)

Trường hợp 1: \(-5x\ge0\Leftrightarrow x\le0\)

(*)\(\Leftrightarrow-5x=3x-16\)

\(\Leftrightarrow-5x-3x=-16\)

\(\Leftrightarrow-8x=-16\)

hay x=2(loại)

Trường hợp 2: \(-5x< 0\Leftrightarrow x>0\)

(*)\(\Leftrightarrow5x=3x-16\)

\(\Leftrightarrow5x-3x=-16\)

\(\Leftrightarrow2x=-16\)

hay x=-8(loại)

Vậy: \(S=\varnothing\)

d) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\frac{x-2}{x-2}-\frac{2}{x-2}=\frac{5x+2}{4-x^2}\)

\(\Leftrightarrow\frac{x-4}{x-2}=\frac{5x+2}{4-x^2}\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{5x+2}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2-2x-8+5x+2}{\left(x-2\right)\left(x+2\right)}=0\)

Suy ra: \(x^2+3x-6=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{33}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{33}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{2}=\frac{\sqrt{33}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{33}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{33}-3}{2}\left(tm\right)\\x=\frac{-\sqrt{33}-3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{\sqrt{33}-3}{2};\frac{-\sqrt{33}-3}{2}\right\}\)

26 tháng 4 2018

a)  \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)

Vậy...

b)   \(ĐKXĐ:\)  \(x\ne-2;\) \(x\ne4\)

          \(\frac{3}{x+2}+\frac{2}{x-4}=0\)

\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Rightarrow\)\(5x-8=0\)

\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)

Vậy...

c)  \(x^3+4x^2+4x+3=0\)

\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)

\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)  (do  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))

\(\Leftrightarrow\)\(x=-3\)

Vậy...

26 tháng 4 2018

có thể làm giùm 3 câu còn lại ko bn:)

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

29 tháng 3 2020

1) Ta có : \(4x+20=0\)

=> \(x=-\frac{20}{4}=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

2) Ta có : \(3x+15=30\)

=> \(3x=15\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

3) Ta có : \(8x-7=2x+11\)

=> \(8x-2x=11+7=18\)

=> \(6x=18\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

4) Ta có : \(2x+4\left(36-x\right)=100\)

=> \(2x+144-4x=100\)

=> \(-2x=-44\)

=> \(x=22\)

Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)

5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)

=> \(2x-3+5=4x+12\)

=> \(-2x=10\)

=> \(x=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

29 tháng 3 2020

1) 4x+20=0

\(\Leftrightarrow\) 4x=-20

\(\Leftrightarrow\) x=-5

Vậy pt trên có tập nghiệm là S={-5}

2) 3x+15=30

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

3) 8x-7=2x+11

\(\Leftrightarrow\) 8x-2x=11+7

\(\Leftrightarrow\) 6x=18

\(\Leftrightarrow\) x=3

Vậy pt trên có tập nghiệm là S={3}

4) 2x+4(36-x)=100

\(\Leftrightarrow\) 2x+144-4x=100

\(\Leftrightarrow\) -2x+144=100

\(\Leftrightarrow\) -2x=-44

\(\Leftrightarrow\) x=22

Vậy pt trên có tập nghiệm là S={22}

5) 2x-(3-5x)=4(x+3)

\(\Leftrightarrow\) 2x-3+5x=4x+12

\(\Leftrightarrow\) 2x+5x-4x=12+3

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

6) 3x(x+2)=3(x-2)2

\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)

\(\Leftrightarrow\) 3x2+6x=3x2-12x+12

\(\Leftrightarrow\) 3x2-3x2+6x+12x=12

\(\Leftrightarrow\) 18x=12

\(\Leftrightarrow\) x=\(\frac{2}{3}\)

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

4 tháng 3 2020

\(3x^2+7x-20=0\)

Ta có \(\Delta=7^2+4.3.20=289,\sqrt{\Delta}=17\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+17}{6}=\frac{5}{3}\\x=\frac{-7-17}{6}=-4\end{cases}}\)

4 tháng 3 2020

a) \(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)

<=> 24x - 4(3x - 1) = 24 + 3(x - 3)

<=> 24x - 12x - 4 = 24 + 3x - 9

<=> 12x + 4 = 24 + 3x - 9

<=> 12x + 4 = 3x + 15

<=> 12x = 3x + 15 - 4

<=> 12x = 3x + 11

<=> 12x - 3x = 11

<=> 9x = 11

<=> x = 11/9

Vậy: tập nghiệm phương trình: S = {11/9}

b) \(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)

<=> 3(x - 5) + 3/2 = 2(x - 2) - 6x

<=> 3x - 15 + 3/2 = 2x - 4 - 6x

<=> 3x - 27/2 = -4x - 4

<=> 3x = -4x - 4 + 27/2

<=> 3x = -4x + 19/2

<=> 3x + 4x = 19/2

<=> 7x = 19/2

<=> x = 19/14

Vậy: tập nghiệm phương trình: S = {19/14}

c) \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)

<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{8}-5\)

<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2x+1}{4}-5\)

<=> 2(5x - 3) - 3(7x - 1) = 3(2x + 1) - 60

<=> 10x - 6 - 21x + 3 = 6x + 3 - 60

<=> -11x - 3 = 6x - 57

<=> -3 = 6x - 57 + 11x

<=> -3 = 17x - 57

<=> -3 + 57 = 17x

<=> 54 = 17x

<=> x = 54/17

Vậy: tập nghiệm phương trình: S = {59/17}

d) 3x+ 7x - 20 = 0

<=> 3x2 + 12x - 5x - 20 = 0

<=> 3x(x + 4) - 5(x + 4) = 0

<=> (x + 4)(3x - 5) = 0

<=> x + 4 = 0 hoặc 3x - 5 = 0

<=> x = -4 hoặc x = 5/3

Vậy: tập nghiệm phương trình: S = {-4; 5/3}

e) x- 3x + 2 = 0

<=> (x2 + x - 2)(x - 1) = 0

<=> (x - 1)(x + 2)(x - 1) = 0

<=> x - 1 = 0 hoặc x + 2 = 0

<=> x = 1 hoặc x = -2

Vậy: tập nghiệm phương trình: S = {1; -2}

26 tháng 2 2022

hic, mk chx học

7 tháng 3 2019

1. Thay x = -5 vào phương trình

\(-10m=\frac{1}{2m}+30\Rightarrow-10m-\frac{1}{2m}-30=0\Rightarrow\frac{20m^2-1-60m}{2m}=0\)

\(\Rightarrow20m^2-60m-1=0\Rightarrow20\left(m^2-3m+\frac{9}{4}\right)=46\Rightarrow\left(m-\frac{3}{2}\right)^2=46\)

\(\Rightarrow m-\frac{3}{2}=\sqrt{46}\Rightarrow m=\sqrt{46}+\frac{3}{2}\)

2) Tìm nghiệm của phương trình

\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)=3\), có nghiệm của \(6x-5m=3+3m\) gấp 3 lần, bài toán lại quay trở về giống như bài trên

7 tháng 3 2019

3.a)\(\Leftrightarrow9x^2+54x-9x^2+6x-1=1\)

\(\Leftrightarrow60x=2\Leftrightarrow x=\frac{1}{30}\)

Vậy pt có tập nghiệm là S=\(\left\{\frac{1}{30}\right\}\).

b)\(\Leftrightarrow32x-16x^2-16x^2+40x-25=2\)

\(\Leftrightarrow-32x^2+72x-27=0\)

\(\Leftrightarrow32x^2-72x+27=0\)

Có: \(\Delta=\left(-72\right)^2-4.32.27=1728\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{72+\sqrt{1728}}{64}\\x_2=\frac{72-\sqrt{1728}}{64}\end{matrix}\right.\)

c) Δ\(=\left(-7\right)^2+4.3=\sqrt{61}\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{7+\sqrt{61}}{6}\\x_2=\frac{7-\sqrt{61}}{6}\end{matrix}\right.\)

Câu hỏi của Nguyễn Kim Oanh - Địa lý lớp 0 | Học trực tuyến

Câu trả lời thứ 800.