Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3x . 3 + 3x . 32 + 3x . 33 +....+ 3x . 3100
3x (3 + 32 + 33 + 34) + 3x + 4 (3 + 32 + 33 + 34) + ....+ 3x + 96 (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . 120 chia hết cho 120 (đpcm)

P=(3x+1)+(3x+2)+(3x+3)+...+(3x+100)=3x*3+3x*32+3x*33+...+3x*3100=3x*(3+32+33+34+...+3100)
P=3x[(3+32+33+34)+(35+36+37+38)+...+(397+398+399+3100)]
P=3x[3(1+3+32+33)+35(1+3+32+33)+...+397(1+3+32+33)]
Vì 1+3+32+33=120 nên trong [ ] chia hết cho 120 => P chia hết cho 120 (vì 1 thừa số của tích chia hết cho 120 thì tích đó chia hết cho 120)(đpcm)
chia p cho 3x ta được kết quả là : 31 + 32 + 33 + 34 + ,,,,,,+ 3100 ( có 100 số hạng )
ta chia được 25 nhóm như sau: ( 31 + 32 + 33 + 34) + ( 35 + 36 + 37 + 38 )+ ........ + ( 397 + 398 + 399 + 3100 )
<=> 120 + 34 ,( 120 ) +.....................+ 396 . ( 120 )
các số hạng trên đều chia hết cho 120 => biểu thức p chioa hết 120



Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\) và \(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\) và \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Bài toán phần a)
Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).
Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:
\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:
\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:
\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)
tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.
Bài toán phần b)
Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:
\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).
Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:
\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)
với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.
Kết luận: Chúng ta đã chứng minh được rằng:
- a) \(x^{3} + 1\) chia hết cho \(y + 1\),
- b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Đặt A = 3x+1 + 3x+2 + .... + 3x+100
⇒ A = ( 3x+1 + 3x+2 + 3x+3 + 3x+4 ) + ( 3x+5 + 3x+6 + 3x+7 + 3x+8 ) + ..... + ( 3x+97 + 3x+98 + 3x+99 + 3x+100 )
⇒ A = 3x+1.( 3 + 32 + 33 + 34 ) + 3x+5.( 3 + 32 + 33 + 34 ) + .... + 3x+97.( 3 + 32 + 33 + 34 )
⇒ A = 3x+1. 120 + 3x+5 . 120 + ..... + 3x+97 . 120
⇒ A = 120.( 3x+1 + 3x+5 + 3x+9 + .... + 3x+97 )
Vì 120 ⋮ 120 ⇒ A ⋮ 120 ( đpcm )
31 + 32 + .. + 3100 ( 100 số hạng )
Ta chia được 25 nhóm như sau : ( 3 + 32 + 33 + 34 ) + .. + ( 397 + 398 + 399 + 3100 )
<=> 120 + .. + 396 . 120
Các số hạng đều chia hết cho 120 => biểu thức trên chia hết cho 120

Ta có: A = 3x+1+3x+2+...+3x+100
=> A = (3x + 1 + 3x + 2 + 3x + 3 + 3x + 4) + ..... + (3x + 97 + 3x + 98 + 3x + 99 + 3x + 100)
=> A = 3x(3 + 32 + 33 + 34) + ..... + 3x + 96(3 + 32 + 33 + 34)
=> A = 3x . 120 + .... + 3x + 96.120
=> A = 120.(3x + .... + 3x + 96 ) chia hết cho 120