K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

Áp dụng bđt Bunyakovsky: \(\left(a+b+c\right)^2=\left(a\sqrt{a}.\frac{1}{\sqrt{a}}+b\sqrt{b}.\frac{1}{\sqrt{b}}+c\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)

\(\le\left[\left(a\sqrt{a}\right)^2+\left(b\sqrt{b}\right)^2+\left(c\sqrt{c}\right)^2\right]\left[\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\right]\)

\(=\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

15 tháng 4 2018

1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)+ 1 > 0 

\(\Rightarrow\)Đpcm

  b)Xét 3(a+ b+ c2) -(a + b +c)=3a+ 3b+ 3c- a- b- c- 2ab - 2ac - 2bc

                                                  =2a+ 2b+ 2c - 2ab - 2ac - 2bc

                                                  =(a - b)+ (a - c)+ (b - c)2\(\ge\)0 (với mọi a,b,c)

\(\Rightarrow\)Đpcm

2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

         áp dụng cô-sy

\(\Rightarrow\)A\(\ge\)9

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

NV
11 tháng 3 2019

Theo BĐT Holder ta có:

\(9\left(a^3+b^3+c^3\right)=\left(a^3+b^3+c^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(a.1.1+b.1.1+c.1.1\right)^3\)

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\Rightarrow a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)

\(\Rightarrow P=\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{\left(a+b+c\right)^3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{9}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{9}.3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=\left(a+b+c\right)^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 3 2019

C/m : \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)

Giả sử đpcm là đúng , ta có :

\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right).c^2+c^3\)

\(\Leftrightarrow9\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a^2+2ab+b^2\right).c+3ac^2+3bc^2\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge3ab\left(a+b\right)+\left(3a^2+6ab+3b^2\right).c+3ac^2+3bc^2\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge\left(3a^2c+3ac^2\right)+\left(3bc^2+3b^2c\right)+3ab\left(a+b\right)+6abc\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge3ac\left(a+c\right)+3bc\left(b+c\right)+3ab\left(a+b\right)+6abc\left(1\right)\)

Do a ; b ; c > 0 , áp dụng BĐT Cô - si , ta có :

\(a^3+b^3+c^3\ge3abc\Rightarrow2\left(a^3+b^3+c^3\right)\ge6abc\)

Từ ( 1 ) \(\Rightarrow6\left(a^3+b^3+c^3\right)\ge3ac\left(a+c\right)+3bc\left(b+c\right)+3ab\left(a+b\right)\left(3\right)\)

Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\) ( tự c/m ) , ta có :

\(3\left(a^3+c^3\right)\ge3ac\left(a+c\right)\) ; \(3\left(b^3+c^3\right)\ge3bc\left(b+c\right);3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)

\(\Rightarrow6\left(a^2+b^2+c^2\right)\ge3ab\left(a+b\right)+3ac\left(a+c\right)+3bc\left(b+c\right)\left(4\right)\)

( luôn đúng )

Từ ( 3 ) ; ( 4 ) => Điều giả sử là đúng => đpcm

Áp dụng vào bài toán , ta có :

\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{\left(a+b+c\right)^3}{9}.\frac{9}{a+b+c}=\left(a+b+c\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

6 tháng 4 2016

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!

8 tháng 2 2020

Bạn từ chứng minh BĐT đầu bài.

a) Áp dụng: \(VT\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\) 

\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

b) Với abc = 1. Ta viết BĐT lại thành:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

Sử dụng cách chứng minh ở câu a.

c) Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\) thì xyz = 1; x, y, z > 0. Đưa về chứng minh:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)

Cách chứng minh tương tự câu b.

31 tháng 12 2015

 ta co:  a/(1+b²)=(a+ba²-ab²)/(1+b²)=(a(1+b²)-a...  

Tuong tu: b/(1+c²)>=b-bc/2; c/(1+a²)>=c-ac/2.  

=> a/(1+b²)+b/(1+c²)+c/(1+a²)>=a+b+c-1/2(ab...  

Ma: 3(ab+bc+ca)<=(a+b+c)²=9=> ab+bc+ca <=3  

=>-1/2(ab+bc+ca)>=-3/2  

=> a+b+c-1/2(ab+bc+ca) >=3-3/2=3/2  

=> a/(1+b²)+b/(1+c²)+c/(1+a²)>= 3/2(dpcm)  

Dau "=" say ra <=> a=b=c=1