Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{\left(-11\right)}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{19}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\frac{19}{70}=\frac{3}{35}\)
=> \(\frac{2}{5}+x+\frac{3}{2}=\frac{3}{7}-\frac{3}{35}=\frac{12}{35}\)
=> \(\frac{2}{5}+x=\frac{12}{35}-\frac{3}{2}=-\frac{81}{70}\)
=> \(x=-\frac{81}{70}-\frac{2}{5}=-\frac{109}{70}\)
b) \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)
=> \(\frac{3}{4}x-6=\frac{5}{2}\)
=> \(\frac{3}{4}x=\frac{17}{2}\)
=> \(x=\frac{17}{2}:\frac{3}{4}=\frac{34}{3}\)
Câu c,d tự làm nhé
a. \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{-11}{70}\right|\)
\(\Rightarrow\frac{3}{7}-\left(\frac{19}{10}+x\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)
\(\Rightarrow\frac{3}{7}-\frac{19}{10}-x=\frac{5}{14}-\left|\frac{19}{70}\right|=\frac{5}{14}-\frac{19}{70}\)
\(\Rightarrow-\frac{103}{70}-x=\frac{3}{35}\)
\(\Rightarrow x=-\frac{103}{70}-\frac{3}{35}\)
\(\Rightarrow x=-\frac{109}{70}\)
b. \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)
\(\Rightarrow\frac{3}{4}\left(x-8\right)=\frac{5}{7}.\frac{7}{2}=\frac{5}{2}\)
\(\Rightarrow x-8=\frac{10}{3}\)
\(\Rightarrow x=\frac{34}{3}\)
c. \(\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow\frac{1}{2}=\frac{2}{3}-7x-4x=\frac{2}{3}-11x\)
\(\Rightarrow11x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
d. \(4\left(\frac{1}{2}-x\right)-5\left(x-\frac{3}{10}\right)=\frac{7}{4}\)
\(\Rightarrow2-4x-5x+\frac{3}{2}=\frac{7}{4}\)
\(\Rightarrow2-9x=\frac{1}{4}\)
\(\Rightarrow9x=\frac{7}{4}\)
\(\Rightarrow x=\frac{7}{36}\)
a)A=\(x^5-\dfrac{1}{2}x+7x^3-2x+\dfrac{1}{5}x^3+3x^4-x^5+\dfrac{2}{5}x^4+15\)
=\(=\dfrac{-5}{2}x+\dfrac{36}{5}x^3+\dfrac{17}{5}x^4+15\)
b)B=\(3x^2-10+\dfrac{2}{5}x^3+7x-x^2+8+7x^2\)
\(=9x^2+\dfrac{2}{5}x^3+7x+2\)
c)C=\(\dfrac{1}{7}x-2x^4+5x+6\)
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
= \(\frac{1}{4}+\frac{1}{2}\)
= \(\frac{3}{4}\)
b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)
=\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)
= \(-\frac{35}{27}+\frac{47}{21}\)
= \(\frac{178}{189}\)
c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)
= \(\frac{117}{13}-\frac{311}{65}\)
= \(\frac{274}{65}\)
d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)
= \(\frac{1}{3}+\frac{5}{2}\)
= \(\frac{17}{6}\)
a, \(\frac{-3}{7}+\frac{5}{13}-\frac{4}{7}+\frac{8}{13}\)
\(=\frac{-3}{7}-\frac{4}{7}+\frac{5}{13}+\frac{8}{13}\)
\(=-\frac{7}{7}+\frac{13}{13}=-1+1=0\)
b, \(\frac{-5}{14}-\frac{2}{-14}+\frac{1}{8}+\frac{1}{8}\)
\(=\frac{-5}{14}+\frac{2}{14}+\frac{1}{8}+\frac{1}{8}\)
\(=-\frac{3}{14}+\frac{1}{4}=\frac{1}{28}\)
c,\(-\frac{5}{13}-\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)\)
\(=-\frac{5}{13}-\frac{3}{13}-\frac{3}{5}+\frac{4}{10}\)
\(=-\frac{8}{13}-\frac{3}{5}+\frac{4}{10}=-\frac{79}{65}+\frac{4}{10}=-\frac{53}{65}\)
d, \(\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{4}{6}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)
\(=\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{2}{3}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)
\(=\left[\left(\frac{1}{8}-\frac{1}{2}-\frac{9}{7}-\frac{12}{7}+\frac{2}{3}\right)+\frac{5}{9}\right]\)
\(=-\frac{65}{24}+\frac{5}{9}=-2\frac{11}{72}\)
a)-3/7+5/13-4/7+8/13
=-3/7-4/7+5/13+8/13
=-7/7+13/13
=-1+1
=0
a,\(3:7+\left(-5:2\right)+\left(-3:5\right)\)
\(=\dfrac{3}{7}-\dfrac{5}{2}-\dfrac{3}{5}\)
\(=-\dfrac{187}{70}\)
b,\(-8:18-15:17\)
\(=-\dfrac{8}{18}-\dfrac{15}{17}\)
\(=-\dfrac{203}{153}\)
c,\(4:5-\left(-2:7\right)-7:10\)
\(=\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)-\dfrac{7}{10}\)
\(=\dfrac{27}{10}\)
d,\(3,5-\left(-2:7\right)\)
\(=3,5+\dfrac{2}{7}\)
\(=\dfrac{53}{14}\)
a)3/7x(-8/2)+(-3/5)= -2/7 + (-3/5)= -31/35
b)(4/3)+(-2/5)+(-3/2)= 14/15 + (-3/2)= -17/30
c)4/5-(-2/7)- 7/10 =38/35 - 7/10 = 27/70