Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia trên trục số thành các khoảng:từ 0 đến không quá 1;từ 1 đến ko quá 2;từ 2 đến nhỏ hơn 3
Hiển nhiên 7 số An viết đều nằm trong khoảng này ,Nhưng vì 7=3.2+1
=>sẽ có 1 khoảng chứa ít nhất 3 số (theo nguyên lí Đi-rich-lê)
Gọi 3 số này là a;b;c (a<b<c)
Khi đó (c-a)(c-b)<1
=>c(c-b)-a(c-b)<1
=>c2-bc-ac+ab<1
=>c2-ac-bc+ab<1
=>c2+ab<ac+bc+1
=>đpcm
A= 4 + 22 + 23 +24 +.......+ 220
=>2A=\(8+2^3+2^4+2^5+................+2^{21}\)
=>2A-A=\(2^{21}\)
A=2\(^{21}\)
vì 2\(^{21}\)chia hết cho 128
nên A chia hết cho 128
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
Phương Bùi Mai bn tham khảo nhé:
Tổng A có 100 số hạng, nhóm thành 25 nhóm, mỗi nhóm có 4 số hạng, tổng chia hết cho 120
\(A=1-3+3^2+3^2+.....+3^{99}+3^{100}\)
\(A=3-3^2+3^3-....3^{98}+3^{99}+3^{100}\)
Cộng từng vế ta được:
\(A=1-3^{100};A=1-3^{100}:4\)
Vậy: A chia hết cho 120
Ta có:
\(3^{2002}-2^{2002}+3^{2000}-2^{2000}\)
\(=3^{2002}+3^{2000}-\left(2^{2002}+2^{2000}\right)\)
\(=3^{2000}\left(3^2+1\right)-2^{2000}\left(2^2+1\right)\)
\(=3^{2000}.10-2^{1999}.10=10\left(3^{2000}-2^{1999}\right)⋮10\)
Vậy.....
Câu 1 : (Bạn thông cảm hơi mờ chút )
\(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)
\(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43
Câu 3 :
*Điều kiện đủ :
Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9
*Điều kiện cần :
Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)
Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)
Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9 => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)
Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3
B1: c/m A chia hết cho 10
B2: c/m A chia hết cho 13
Kết hợp với (10;13)=1=> A chia hết cho 130