![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(102=x^2+y^2+52\)
\(=\left(x^2+16\right)+\left(y^2+36\right)\)
\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)
\(\Rightarrow A\le26\) tại x=4;y=6
Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 2x-1 thuộc ước của 2,rồi giải ra
b,c tương tự
d\(\frac{x^2-64-123}{x+8}=\frac{\left(x+8\right)\left(x-8\right)-123}{x+8}=x-8-\frac{123}{X+8}\) .........rồi làm tương tự như câu a,,,,,,,,,,,,còn câu e cũng gần giống câu d
![](https://rs.olm.vn/images/avt/0.png?1311)
C = -( 9x2 -2x +1) -17
= -(3x-1)2-17
ta có -(3x-1)2 bé hơn hoặc bằng 0 với mọi x
nên -(3x-1)2 -17 bé hơn hoặc bằng -17 với mọi x
vậy.............
\(C=-9x^2+2x-17\)
\(=-9\left(x^2-2.\dfrac{1}{9}x+\dfrac{1}{81}\right)-\dfrac{152}{9}\)
\(=-9\left(x-\dfrac{1}{9}\right)^2-\dfrac{152}{9}\)
Vì \(-9\left(x-\dfrac{1}{9}\right)^2\le0\)
Nên \(-9\left(x-\dfrac{1}{9}\right)^2-\dfrac{152}{2}\le0\)
Vậy C luôn âm với mọi giá trị của biến
\(D=-5x^2-6x-11\)
\(=-5\left(x^2+2.\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{46}{5}\)
\(=-5\left(x+\dfrac{3}{5}\right)^2-\dfrac{46}{5}\)
Vì \(-5\left(x+\dfrac{3}{5}\right)^2\le0\)
Nên \(-5\left(x+\dfrac{3}{5}\right)^2-\dfrac{46}{5}\le0\)
vậy D luôn âm với mọi giá trị của biến
\(E=\dfrac{-1}{4}x^2+3x-15\)
\(=-\dfrac{1}{4}\left(x^2-12x+36\right)-6\)
\(=-\dfrac{1}{4}\left(x-6\right)^2-6\le0\)
Vậy E luôn âm với mọi giá trị
![](https://rs.olm.vn/images/avt/0.png?1311)
Kệ cái thằng ấy, nó có trả lời đc câu nào tử tế đâu. Câu **** ý mà, kệ nó đi
![](https://rs.olm.vn/images/avt/0.png?1311)
TL :
\(3x^2+6x=0\)
\(x=3^2+6x0\)
\(x=60:3\)
\(x=20-x^2\)
\(x=20-3\)
\(x=17\)
HT
TL
3x2 + 6x = 0
3x . ( x + 2 ) = 0
=>3x = 0 hoặc (x+2) = 0
=> x = 0 hoặc x = 2
cho mình xin k bn nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+ \(f\left(x\right)=ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)
\(f\left(-2\right)=-8a+4b+c=\left(-2+2\right).Q\left(x\right)\)=> -8a +4b +c =0 ( 1)
+ \(f\left(1\right)=a1^3+b1^2+c=\left(1^2-1\right).H\left(1\right)+\left(1+5\right)\)
=> a+b+c = 6 (2)
+\(f\left(-1\right)=a\left(-1\right)^3+b\left(-1\right)^2+c=\left(\left(-1\right)^2-1\right).H\left(-1\right)+\left(-1+5\right)\)
=> -a +b +c = 4 (3)
từ (2) (3) =. b+c =10 và a =-4
(1) => -8a +4b +c =0 =>4b+c = -32 => 3b +(b+c) = -32 => 3b =-32 - 10 => b =-42/3 = -14
=> c =10 - b = 10 -(-14) = 24
Vậy a = - 4 ; b = -14 ; c = 24
\(A=2\left(x^2-\dfrac{2.1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)+5=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{39}{8}\ge\dfrac{39}{8}\)
Dấu ''='' xảy ra khi x = 1/4