K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

giúp mình với

 

  42:4.33-22+7
⇒ 4.27-4+7
⇒ 108-4+7
⇒ 111

24 tháng 7 2016

Ta thấy : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< 1-\frac{1}{100}\)

Mà \(1-\frac{1}{100}< 1\)nên \(S< 1\)

Ủng hộ mk nha !!! *_*

7 tháng 5 2018

\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\left(đpcm\right)\)

12 tháng 2 2023

A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) +.................+ \(\dfrac{1}{2004^2}\)

A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\) + \(\dfrac{1}{7.7}\)+..............+ \(\dfrac{1}{2004.2004}\)

Vì \(\dfrac{1}{5}>\dfrac{1}{6}>\dfrac{1}{7}>...........>\dfrac{1}{2004}\)

nên ta có : \(\dfrac{1}{5.5}>\dfrac{1}{5.6}>\dfrac{1}{6.6}>\dfrac{1}{6.7}>\dfrac{1}{7.7}>.....>\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)

\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2004.2004}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+..+\dfrac{1}{2004.2005}\)

A > \(\dfrac{1}{5}\) \(-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+....+\dfrac{1}{2004}-\dfrac{1}{2005}\)

A > \(\dfrac{1}{5}\) - \(\dfrac{1}{2005}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{24060}\)

\(\dfrac{1}{65}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{65}\) 

Vì \(\dfrac{12}{65}\) > \(\dfrac{12}{24060}\) nên A>  \(\dfrac{1}{65}\) ( phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn)

Tương tự ta có :

A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\)\(\dfrac{1}{7.7}\)+......+\(\dfrac{1}{2004.2004}\) >\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+.....\(\dfrac{1}{2003.2004}\)

A < \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +......+ \(\dfrac{1}{2003}\) - \(\dfrac{1}{2004}\)

A < \(\dfrac{1}{4}-\dfrac{1}{2004}\) < \(\dfrac{1}{4}\)

\(\dfrac{1}{65}< \)A < \(\dfrac{1}{4}\) (đpcm)

25 tháng 7 2018

1/2^2+1/3^2+1/4^2+....+1/2005^2

ta có vì:1/2^2<1/2; 1/3^2 <1/2.....;1/2005^2<1/2

suy ra 1/2^2+1/3^2+1/4^2+....+1/2005^2<1/2

31 tháng 12 2018

86:[2.(2.x-1)2-7]+42 = 2.32

86:[2.(2.x-1)2-7]+16 = 2.9

86:[2.(2.x-1)2-7]+16 = 18

86:[2.(2.x-1)2-7]       = 18-16

86:[2.(2.x-1)2-7]       = 2

      2.(2.x-1)2-7        = 86:2

      2.(2.x-1)2-7        = 43

      2.(2.x-1)2           = 43+7

      2.(2.x-1)2           = 50

         (2.x-1)2           = 50:2

         (2.x-1)2           = 25

         (2.x-1)2           =52

\(\Rightarrow\)2.x-1               = 5

        2.x                   = 5+1

        2.x                   = 6

           x                   = 6:2

          x                    = 3

13 tháng 4 2019

\(\left[1-\frac{1}{2^2}\right]\left[1-\frac{1}{3^2}\right]\left[1-\frac{1}{4^2}\right]...\left[1-\frac{1}{10^2}\right]\)

\(=\left[1-\frac{1}{4}\right]\left[1-\frac{1}{9}\right]\left[1-\frac{1}{16}\right]...\left[1-\frac{1}{100}\right]\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{99}{100}\)

Tự tính :v