
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Xét : \(P^2=\frac{3\left(a-b\right)^2}{3\left(a+b\right)^2}=\frac{3\left(a^2+b^2\right)-6ab}{3\left(a^2+b^2\right)+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)
Vì a > b > 0 nên P > 0 . Vậy \(P=\frac{1}{2}\)
b) Tương tự.
a/ \(3a^2+3b^2=10ab\Leftrightarrow3\left(a^2+b^2\right)=10ab\Leftrightarrow a^2+b^2=\frac{10ab}{3}\)
\(\Leftrightarrow a^2+b^2-2ab=\frac{10ab}{3}-2ab\Leftrightarrow\left(a-b\right)^2=\frac{4ab}{3}\)
tương tự: \(a^2+b^2=\frac{10ab}{3}\Leftrightarrow a^2+b^2+2ab=\frac{10ab}{3}+2ab\Leftrightarrow\left(a+b\right)^2=\frac{16ab}{3}\)
\(\Rightarrow P^2=\left(\frac{a-b}{a+b}\right)^2=\frac{\frac{4ab}{3}}{\frac{16ab}{3}}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)

Câu b). Theo đầu bài ta có:
\(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=ab+4ab\)
\(\Rightarrow2a^2+2b^2-4ab=ab\)
\(\Rightarrow2\left(a^2+b^2-2ab\right)=ab\)
\(\Rightarrow\left(a-b\right)^2=\frac{ab}{2}\)
\(\Rightarrow a-b=\sqrt{\frac{ab}{2}}\)
Mà \(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=9ab-4ab\)
\(\Rightarrow2a^2+2b^2+4ab=9ab\)
\(\Rightarrow2\left(a^2+b^2+2ab\right)=9ab\)
\(\Rightarrow\left(a+b\right)^2=\frac{9ab}{2}\)
\(\Rightarrow a+b=\sqrt{\frac{9ab}{2}}\)
Từ trên suy ra:
\(Q=\frac{a+b}{a-b}=\left(a+b\right):\left(a-b\right)\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}}:\sqrt{\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}:\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9\cdot ab\cdot2}{ab\cdot2}}\)
\(\Leftrightarrow Q=\sqrt{9}=3\)

\(a^2+b^2+2\ge2\left(a+b\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=1\)
\(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\Leftrightarrow\left(a+b\right)\left(a^2+b^2\right)\le2\left(a^3+b^3\right)\)
\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\("="\Leftrightarrow a=b\)

Với a,b,c > 0
Áp dụng bđt cosi cho 2 số dương \(\frac{a^2}{b^2}\)và \(\frac{b^2}{c^2}\), ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\) (1)
CMTT: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\frac{c}{b}\)(2)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)(3)
Từ (1), (2) và (3) cộng vế theo vế:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{a^2}{b^2}+\frac{c^2}{a^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{a}{c}+2\frac{c}{b}+2\frac{b}{a}\)
<=> \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
<=> \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Ta có: \(a^2+ab+b^2\)
\(=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\frac{3\left(a+b\right)^2}{4}}=\frac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự, ta có: \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{c^2+ca+a^2}\ge\frac{\sqrt{3}}{2}\left(c+a\right)\)
Do đó ta có: \(Q\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+c+a\right)=\sqrt{3}\) ( Do a+b+c=1)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1

Ta sẽ chứng minh bầng biến đổi tương đương :
a ) \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)
Vậy bđt được chứng minh.
b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
Bạn cần thêm điều kiện a,b>0 cho cả a) nữa nhé :)
a/ ta có :\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2+b^2}{2}\ge ab\) ( ĐPCM)

a) Ta có: \(\frac{a^2}{a+b}-\frac{b^2}{a+b}+\frac{b^2}{b+c}-\frac{c^2}{b+c}+\frac{c^2}{c+a}-\frac{a^2}{c+a}\) \(=a-b+b-c+c-a=0\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
\(\Rightarrow2\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)\(\ge\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ca}{c+a}\)
\(\Rightarrowđpcm\)
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(a^2b^2\left(a^2+b^2\right)=\frac{1}{2}\cdot ab\cdot2ab\cdot\left(a^2+b^2\right)\le\frac{1}{2}\cdot\frac{\left(a+b\right)^2}{4}\cdot\frac{\left(2ab+a^2+b^2\right)^2}{4}=2\)
Dấu "=" \(\Leftrightarrow a=b=1\)
Sửa :
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2\ge2a+2b\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
Trời ơi trễ 1 giây rồi
Huhu
Đang định trả lời thì