Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A chia hết cho 3 thì:
\(1212+15+21+x⋮3\)
Mà: 1212,15,21 đều chia hết cho 3 nên x cũng chia hết cho 3.
\(\Rightarrow x\in B\left(3\right)\)
Như vậy để x không chia hết cho 3 thì:
\(\Rightarrow x\in B\left(3k+1\right),x\in\left(3k+2\right)\)
Bài 1:
a) n+4 chia hết cho n-13
=> n-13+17 chia hết cho n-13
=> 17 chia hết cho n-13
=> n-13 \(\in\) Ư(17) = {1;-1;17;-17}
=> n \(\in\) {14;12;30;-4}
Vì n \(\in\) N nên n \(\in\) {14;20;30}
b) n-5 chia hết cho n-11
=> n-11+6 chia hết cho n-11
=> 6 chia hết cho n-11
=> n-11 \(\in\) Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n \(\in\) {12;10;13;9;14;8;17;5}
Bài 2:
Để \(\overline{34x5}\) chia hết cho 9
=> 3+4+x+5 chia hết cho 9
=> 12+x chia hết cho 9
=> x = 7
1) Đặt phép chia 1994xy cho 72, ta có:
1994xy : 72 = 27 dư 50xy
Xét x=1 => 501y : 72 = 6 dư 69y
Mà: số chia hết cho 72 gần số 69y là 648 và 720
=> 69y không chia hết cho 72 với mọi giá trị y
Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72
=> x=4
Thay x=4 ta có: 504y : 72 = 6 dư 72y
Để 72y chia hết cho 72 thì y=0
Vậy các giá trị x,y cần tìm là: x=4; y=0
2) Ta có: n là số nguyên tố >3
=> n có dạng n= 3k+1 (k\(\in\)N*)
=> n2+2015 = 3k+1+2015
=> n2+2015 = 3k+2016
Do: 3k\(⋮\)3, 2016\(⋮\)3
=> 3k+2016 \(⋮\)3
=> n2+2015 \(⋮\)3
Vậy n2+2015 là hợp số
A = 12 + 15 + x
a) A chia hết cho 3 => 12 + 15 + x chia hết cho 3
Ta thấy 12 chia hết cho 3
15 chia hết cho 3
=> Để A chia hết cho 3 => x chia hết cho 3
b) A không chia hết cho 3 => 12 + 15 + x không chia hết cho 3
Ta thấy 12 chia hết cho 3
15 chia hết cho 3
=> Để A không chia hết cho 3 => x không chia hết cho 3
a, tìm bcnn của 32, 35, 99
b, tìm bc của 39, 65, 91 trong khoảng từ 2000 đến 6000
nhấn đúng cho mk nha
Để \(P\in Z\)thì \(n\in Z\)
\(P=\frac{2n+5}{n+3}\)
\(\Rightarrow P=\frac{2n+6-1}{n+3}\)
\(\Rightarrow P=2+\frac{-1}{n+3}\)
Mà \(n\in Z;-1⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
3. Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lè.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
P/s : Bài 2 k làm được thì ib mk nhé -.-
Để 25xy\(⋮15\)=) 25xy\(⋮3,5\)
* Để 25xy\(⋮5\)=) y = 0 hoặc 5
Với y = 0 =) 25xy=25x0
* Để 25x0\(⋮3\)=) ( 2+5+x+0 )\(⋮3\)
=) 7 + x\(⋮3\)
=) \(x=2,5,8\)
Vậy với y = 0 thì x = 2,5,8
Với y = 5 =) ...(giống như trên)