Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
a) 11/15 + 5/7 + 2/7 + 4/15
= ( 11/15 + 4/15 ) + ( 5/7 + 2/7 )
= 1 + 1
= 2
b ) 5/9 x 1/2 + 5/9 x 6/4
= 5/9x ( 1/2 + 6/4 )
= 5/9 x 2
= 10/9
c) 7/8 : 1/2 + 9/8 : 1/2
= ( 7/8 + 9/8 ) ; 1/2
= 2 : 1/2
= 4
d) 17/10 + 1/2 - 7/10
= ( 17/10 - 7/10 ) + 1/2
= 1 + 1/2
= 3/2
A = ( 6 : 3/5 - 7/6 * 6/7 ) : ( 21/5 * 10/11 + 57/11 )
A = ( 10 - 1 ) : ( 42/11 + 57/11)
A = 9 : 9
A = 1
B = 59 /10 : 3/2 - ( 7/3 * 9/2 - 2 * 7/3 ) : 7/4
B = 59/15 - ( 21/2 - 14/3 ) : 7/4
B = 59/15 - 35/6 : 7/4
B = 59/15 - 10/3
B = 3/5
Ta có:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(B=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{10}\right)=2.\frac{9}{10}\)
\(B=\frac{9}{5}\)
C = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5
C = 1/1 - 1/5
C = 4/5
Sửa đề:
\(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)
\(=2\times\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)
\(=\dfrac{2}{3}\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{97\times100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\dfrac{99}{100}\)
\(=\dfrac{198}{300}\)
\(=\dfrac{33}{50}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)