\(A=2^0+2^1+2^2+2^3+2^4+...+2^{100}\)

\(B=2^{101}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

\(Ta\) \(có:\)
\(A=2^0+2^1+2^2+2^3+...+2^{100}\)
\(=>2A=2+2^2+2^3+...+2^{101}\)
\(=>2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(2^0+2^1+2^2+...+2^{100}\right)\)
\(=>A=2^{101}-1\)
\(Mà\) \(B=2^{101}\)
\(=>A< B\)

20 tháng 12 2022

thanks 

3 tháng 11 2016

mình mới học lớp 5

tk nhé@@@@@@@@@@@@@@@@

hihi

LOL

Liên MIh hay s mà LOL?

30 tháng 5 2018

Bài 4:

Ta có:

\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2b}{12}=\dfrac{2a+2b+c}{24}\)

\(\Leftrightarrow2a+2b+c=\dfrac{24b}{6}=4b\) (1)

Áp dụng thêm một lần, ta có:

\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2a-b+c}{6}\)

\(\Leftrightarrow2a-b+c=\dfrac{6b}{6}=b\) (2)

Từ (1) và (2), ta có:

\(\dfrac{2a+2b+c}{2a-b+c}=\dfrac{4b}{b}=4\)

Vậy ...

31 tháng 5 2018

Câu 1 :

\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b}{ab}-\dfrac{a}{ab}=\dfrac{\left(b-a\right)}{ab}=\dfrac{1}{a-b}\)

Từ đó suy ra : (b-a)(a-b)=ab <=> \(-a^2-b^2+2ab=-\left(a-b\right)^2\)=ab

Mà a,b là số dương nên ab >0 , \(\left(a-b\right)^2>0\) nên \(-\left(a-b\right)^2< 0\)

( không thỏa mãn)

Vậy không có bất kì a,b nguyên dương nào mà \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

24 tháng 10 2017

mk ko bt 123

8 tháng 7 2021

Sửa đề \(\frac{3}{2}+\frac{5}{2^2}+\frac{9}{2^3}+...+\frac{2^{100}+1}{2^{100}}=\frac{2+1}{2}+\frac{2^2+1}{2^2}+\frac{2^3+1}{2^3}+...+\frac{2^{100}+1}{2^{100}}\)

\(\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)(100 hạng tử 1) 

\(100+\left(1-\frac{1}{2^{100}}\right)=101-\frac{1}{2^{100}}< 101\)(1)

Vì \(-\frac{1}{2^{100}}>-1\Rightarrow101-\frac{1}{2^{100}}>101-1\Rightarrow B>100\)(2)

Từ (1) và (2) => 100 < B < 101 

15 tháng 7 2019

\(a,A=1^2+3^2+5^2+...+99^2\)

\(A=1+2^2+3^2+4^2+5^2+...+99^2\)

\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}\)

\(A=333300-4950=328350\)