K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

a.\(\left|2-x\right|=2x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}2-x=2x-1;x\le2\\x-2=2x-1;x>2\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

b.\(\left|-2x\right|=x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=x-3;x\le0\\2x=x-3;x>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

15 tháng 8 2018

a) \(36x^2-49=0\)

\(\Leftrightarrow\left(6x\right)^2-7^2=0\)

\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)

\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)

\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)

16 tháng 8 2018

Bài 2

a) 36x2-49=0

⇔ (6x)2-49=0

⇔(6x-7).(6x+7)=0

TH1: 6x-7=0 TH2: 6x+7=0

⇔6x=7 ⇔6x=-7

⇔x=7/6 ⇔x=-7/6

30 tháng 10 2016

bn cho mik xin lại cái đè bài câu a đc k mà bn lớp mấy thế

23 tháng 9 2017

. Ai đó giúp tôi đi mà ._.

28 tháng 9 2017

bài khó quá bạn ạ

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

d)

$x^4+2x^3+2x^2+2x+1$

$=(x^4+2x^3+x^2)+(x^2+2x+1)$

$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$

$=(x+1)^2(x^2+1)$

e)

$x^2y+xy^2+x^2z+y^2z+2xyz$

$=xy(x+y)+z(x^2+y^2)+2xyz$

$=xy(x+y)+z(x^2+y^2+2xy)$

$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$

f)

$x^5+x^4+x^3+x^2+x+1$

$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$

$=(x+1)(x^4+x^2+1)$

$=(x+1)[(x^4+2x^2+1)-x^2]$

$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

a)

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2$

$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

$=(x-1)^3(x+1)$

b)

$a^6-a^4+2a^3+2a^2$

$=a^4(a^2-1)+2a^2(a+1)$

$=a^4(a-1)(a+1)+2a^2(a+1)$

$=(a+1)[a^4(a-1)+2a^2]$

$=a^2(a+1)[a^2(a-1)+2]$

$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$

$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$

$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$

c)

$x^4+x^3+2x^2+x+1$

$=(x^4+2x^2+1)+(x^3+x)$

$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$

1 tháng 9 2020

\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

     \(\text{Vậy x=-5}\)

\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)

\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)

\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)

\(\Rightarrow-16x-8=7\)

\(\Rightarrow-16x=15\)

\(\Rightarrow x=\frac{-15}{16}\)

      \(\text{Vậy }x=\frac{-15}{16}\)

\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)

\(\Rightarrow-9+8x-1=8\)

\(\Rightarrow8x=18\)

\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)

      \(\text{Vậy }x=\frac{9}{4}\)

\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)

21 tháng 10 2017

a) (x - 1)3 + 3(x + 1)2 = (x2 - 2x + 4)(x + 2)

x3 - 3x2 + 3x - 1 + 3(x2 + 2x+ 1) = x3 + 8

\(\Rightarrow\)x3 - 3x2 + 3x - 1 + 3x2 + 6x - x3 - 8 = 0

\(\Rightarrow\) 9x - 9 = 0

\(\Rightarrow\) 9x = 9

\(\Rightarrow\) x = 1

b) (2x - 1)(x + 3) - x(3 + 2x) = 26

2x2 + 6x - x - 3 - 3x - 2x2 = 26

2x - 3 = 26

\(\Rightarrow\) 2x = 29

\(\Rightarrow\) x = 14.5

21 tháng 10 2017

a) ( x - 1)3 + 3(x+1)2 = (x2 - 2x + 4 )( x+ 2)

=>x3-3x2+3x-1+3(x2+2x+1)=x3+8

=>x3-3x2+3x-1+3x2+6x+3-x3-8=0

=>(x3-x3)+(-3x2+3x2)+(3x+6x)+(-1+3-8)=0

=>9x-6=0

=>9x=6

=>x=\(\dfrac{2}{3}\)

a) Ta có: 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)

b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

hay \(x=\frac{15}{8}\)

Vậy: \(x=\frac{15}{8}\)

c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)

\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)

\(\Leftrightarrow-6x^2-11x=0\)

\(\Leftrightarrow6x^2+11x=0\)

\(\Leftrightarrow x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)

d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)

\(\Leftrightarrow14x^2+18=0\)

\(\Leftrightarrow14x^2=-18\)

\(14x^2\ge0\forall x\)

nên \(x\in\varnothing\)

Vậy: \(x\in\varnothing\)