Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)
b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)
c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)
d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)
a) Ta có: a = -1/8 = -9/72
b = 2/-9 = -2/9 = -16/72
Ta thấy: -9 > -16 => -9/72 > -16/72
hay a > b
Vậy a > b
b) Ta có: a = 12/15 = 4/5= 16/20
b = -( -3/4 ) = 3/4= 15/20
Ta thấy: 16 > 15 => 16/20 > 15/20
hay a > b
Vậy a > b
c) Ta có: a = -2/3 = -40/60
b = -0,65 = -13/20 = -39/60
Ta thấy: -40 < -39 => -40/60 < -39/60
hay a < b
Vậy a < b
d) Ta có: a = -21/3 = -7
b = -413% = -4,13
Ta thấy: -7 < -4,13
=> a < b
Vậy a < b
Chuk bn hok tốt!
Ta có:
\(\frac{A}{B}=\frac{3}{7}\); \(\frac{B}{C}=\frac{15}{28}\)
=> \(\frac{A}{B}.\frac{B}{C}=\frac{3}{7}.\frac{15}{28}\)
=> \(\frac{A}{C}=\frac{45}{196}\)
Vậy tỉ số của 2 số C và A là \(\frac{196}{45}\)
Chọn A
a) Theo đề, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c =1,5
Theo t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
=>a=0,3
b=0,45
c=0,75
a) Vì a,b,c tỉ lệ với 2,3,5
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
\(\frac{a}{2}=\frac{3}{20}=>a=\frac{3}{20}.2=\frac{3}{10}\)
\(\frac{b}{3}=\frac{3}{20}=>b=\frac{3}{20}.3=\frac{9}{20}\)
\(\frac{c}{5}=\frac{3}{20}=>c=\frac{3}{20}.5=\frac{3}{4}\)
b)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\frac{a}{2}=5=>a=5.2=10\)
\(\frac{b}{3}=5=>b=5.3=15\)
\(\frac{c}{4}=5=>c=5.4=20\)
c) \(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}\)
\(\frac{a}{10}=\frac{b}{15},\frac{b}{15}=\frac{c}{12}\)
\(=>\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{-39}{13}=-3\)
\(\frac{a}{10}=-3=>-3.10=-30\)
\(\frac{b}{15}=-3=>-3.15=-45\)
\(\frac{c}{12}=-3=>-3.12=-36\)
\(A=3^0+3^1+3^2+...+3^{2018}\)
\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)
\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)
\(2A=3^{2019}-3^0=3^{2019}-1\)
để mình làm đề rõ rang hơn cho
a x b = \(\frac{3}{5}\); b x c = \(\frac{4}{5}\); a x c = \(\frac{3}{4}\)
có phải ý bn là như thế này ko
ab = 3/5 ; bc = 4/5 ; ac = 3/4
Ta có : ab = 3/5 => \(a=\frac{3}{5}\div b\)(1)
bc = 4/5 => \(c=\frac{4}{5}\div b\)(2)
Nhân (1) với (2) theo vế
=> \(ac=\left(\frac{3}{5}\div b\right)\times\left(\frac{4}{5}\div b\right)=\frac{3}{4}\)
=> \(\left(\frac{3}{5}\times\frac{1}{b}\right)\times\left(\frac{4}{5}\times\frac{1}{b}\right)=\frac{3}{4}\)
=> \(\frac{3}{5b}\times\frac{4}{5b}=\frac{3}{4}\)
=> \(\frac{12}{25b^2}=\frac{3}{4}\)
=> 12.4 = 25b2.3
=> 48 = 75b2
=> b2 = 48/75 = 16/25
=> b = ±4/5
Với b = 4/5 => \(\hept{\begin{cases}a=\frac{3}{5}\div\frac{4}{5}=\frac{3}{4}\\c=\frac{4}{5}\div\frac{4}{5}=1\end{cases}}\)
Với b = -4/5 => \(\hept{\begin{cases}a=\frac{3}{5}\div\left(-\frac{4}{5}\right)=-\frac{3}{4}\\c=\frac{4}{5}\div\left(-\frac{4}{5}\right)=-1\end{cases}}\)
=> Hai cặp ( a ; b ; c ) thỏa mãn là : ( 3/4 ; 4/5 ; 1 ) , ( -3/4 ; -4/5 ; -1 )
Ta có:
VT= a2 + b2 + c2 +\(\frac{21}{4}\)= a2 + b2 + c2 + \(\frac{16}{4}+\frac{5}{4}\)= a2 + b2 + c2 + 4 + \(\frac{5}{4}\)
Mà a2, b2, c2 \(\ge\) 0 (bình phương một số luôn lớn hơn hoặc bằng 0)
Vậy, a2 + b2 + c2 + 4 + \(\frac{5}{4}\) \(\ge\) 4 + \(\frac{5}{4}\) hay a2 + b2 + c2 +\(\frac{21}{4}\)\(\ge\) 4