\(a^2-ab+b^2=a+b \)

\(P=505a+505b\)

GTNN, GTLN củ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

Ta có: \(a^2-ab+b^2=a+b\)

<=> \(a^2-a\left(b+1\right)+b^2-b=0\)

<=> \(a^2-2a.\frac{b+1}{2}+\left(\frac{b+1}{2}\right)^2-\frac{b^2}{4}-\frac{b}{2}-\frac{1}{4}+b^2-b=0\)

<=> \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=1\)

Ta có: \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=\frac{\left(a-\frac{b+1}{2}\right)^2}{1}+\frac{\left(\frac{3}{2}b-\frac{3}{2}\right)^2}{3}\)

\(\ge\frac{\left(a+b-2\right)^2}{4}\)

=> \(1\ge\frac{\left(a+b-2\right)^2}{4}\)

<=> \(\left(a+b-2\right)^2\le4\)

<=> \(-2\le a+b-2\le2\)

<=> \(0\le a+b\le4\)

mà  \(P=505a+505b=505\left(a+b\right)\)

=> \(0\le P\le2020\)

Dấu "=" xảy ra <=> \(\frac{a-\frac{b+1}{2}}{1}=\frac{\frac{3}{2}b-\frac{3}{2}}{3}\)<=> a = b 

Nếu P = 0 khi đó: a + b = 0 <=> a = b = 0 

Nếu P = 2020 <=>  a + b = 4 <=> a = b = 2

Vậy: GTNN của P = 0 đạt tại a = b = 0 

GTLN của P= 2020 đạt tại a = b = 2

4 tháng 7 2020

\(a^2-ab+b^2=a+b\Rightarrow\left(a-b\right)^2=a+b-ab\)

\(\left(a-b\right)^2\ge0\Rightarrow\left(a+b\right)\ge ab\Rightarrow2\left(a+b\right)\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a+b\right)+a^2+b^2=2\left(a+b\right)+a+b+ab\le4\left(a+b\right)\)

\(\Leftrightarrow0\le a+b\le4\Leftrightarrow0\le P\le2020\)\(D=xr\Leftrightarrow\orbr{\begin{cases}a=b=0\\a=b=2\end{cases}}\)

NV
6 tháng 6 2020

\(a+b=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2=\frac{1}{4}\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b-4\right)\le0\)

\(\Rightarrow0\le a+b\le4\)

\(\Rightarrow P_{min}=0\) khi \(a=b=0\)

\(P_{max}=505.4=2020\) khi \(a=b=2\)

27 tháng 7 2020

hiển nhiên \(a,b\ge c\) nên không mất tính tổng quát, ta giả sử \(a\ge b\ge c\)

Ta co: 

\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow\)\(ab\ge a+b-1\)

\(bc\ge0\)

\(c\left(a-b\right)\ge0\)\(\Leftrightarrow\)\(ca\ge bc\ge c\)

\(\frac{9}{ab+bc+ca}-2\le\frac{9}{a+b-1+c}-2=\frac{5}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}\left(a;b;c\right)=\left(2;1;0\right)\\\left(a;b;c\right)=\left(1;2;0\right)\end{cases}}\)

23 tháng 3 2021
Bănh chó shshshshhsshshhshshshshshshshshshshshshshshshsbsbsbsbshshhshsh

Tìm min:

Theo BĐT AM-GM thì: P=a2+b2+c2ab+bc+acP=a2+b2+c2≥ab+bc+ac hay P9P≥9

Vậy Pmin=9Pmin=9. Giá trị này đạt tại a=b=c=3a=b=c=3

-----------

Tìm max:

P=a2+b2+c2=(a+b+c)22(ab+bc+ac)=(a+b+c)218P=a2+b2+c2=(a+b+c)2−2(ab+bc+ac)=(a+b+c)2−18

Vì a,b,c1a,b,c≥1 nên:

(a1)(b1)0ab+1a+b(a−1)(b−1)≥0⇔ab+1≥a+b

Hoàn toàn tương tự: bc+1b+c;ac+1a+cbc+1≥b+c;ac+1≥a+c

Cộng lại: 2(a+b+c)ab+bc+ac+3=122(a+b+c)≤ab+bc+ac+3=12

a+b+c6⇒a+b+c≤6

P=(a+b+c)2186218=18⇒P=(a+b+c)2−18≤62−18=18

Vậy Pmax=18Pmax=18. Giá trị này đạt tại (a,b,c)=(1,1,4)(a,b,c)=(1,1,4) và hoán vị

14 tháng 6 2017

*Theo BĐT Cô-si: \(a^2+b^2\ge2ab\) (1) ; \(b^2+c^2\ge2bc\) (2) ;  \(c^2+a^2\ge2ca\) (3)

Cộng vế theo vế (1), (2) và (3) ta được \(2P\ge2\left(ab+bc+ca\right)\Leftrightarrow P\ge ab+bc+ca=9\)

Vậy minP = 9, dấu bằng xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=9\\ab+bc+ca=9\end{cases}\Leftrightarrow a=b=c=\sqrt{3}}\)

**Từ giả thiết \(\Rightarrow ab+c\left(a+b\right)=9\Leftrightarrow c=\frac{9-ab}{a+b}\left(+\right)\)mà a, b, c là các số thực \(\ge1\)nên a,b \(\in\)[\(1;+\infty\)), tức là a, b dương vô cực, lớn không giới hạn \(\Rightarrow\left(+\right)\)dương vô cực hay \(a^2+b^2+c^2\)cũng lớn không giới hạn

Do đó: Không tồn tại maxP với điều kiện a, b, c là các số thực \(\ge1\)

***Kết luận: minP = 9 ; maxP không tồn tại

15 tháng 6 2017

Mình xin lỗi bạn Kim Huệ Thương nhé! Phần GTLN của câu này mình xin phép giải lại, mong bạn thông cảm vì sơ suất của mình nhé!

Ta có: \(a\ge1;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)(1)

Tương tự ta có: \(bc+1\ge b+c\)(2),      \(ca+1\ge c+a\)(3)

Cộng vế theo vế (1), (2) và (3) ta được: \(ab+bc+ca+3\ge2\left(a+b+c\right)\Leftrightarrow a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

\(\Leftrightarrow\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-18=18\)

Dấu ''='' xảy ra khi:  \(\hept{\begin{cases}a^2+b^2+c^2=18\\ab+bc+ca=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}or\hept{\begin{cases}a=1\\b=4\\c=1\end{cases}or\hept{\begin{cases}a=4\\b=1\\c=1\end{cases}}}}}\)

Xin lỗi bạn nhé!         ^_^

Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất  \(\Rightarrow\)\(1+\frac{b}{a}\)lớn nhất \(\Rightarrow\frac{b}{a}\)lớn nhất  \(\Rightarrow\)b lớn nhất , a nhỏ nhất  

\(\Rightarrow\)b = 9 ; a = 1

Vậy \(A_{min}=\frac{19}{1+9}=1,9\)