K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

nha ban :3

10 tháng 10 2018

ko bit =)

4 tháng 8 2015

h) (x+1)(x+4)(x+2)(x+3) - 24

= (x2+4x+x+4)(x2+3x+2x+6)-24

=(x2+5x+5-1)(x2+5x+5+1)-24

=(x2+5x+5)-12 -24

=(x2+5x+5)-25

=(x2+5x+5)-52

=(x2+5x+5-5)(x2+5x+5+5)

=(x2+5x)(x2+5x+10)

 

i) 4(x2+5x+10x+50)(x2+6x+12x+72)-3x2

=4[x(x+5)+10(x+5)].[x(x+6)+12(x+6)]- 3x2

=4(x+10)(x+5)(x+12)(x+6)-3x2

=4(x+10)(x+6)(x+12)(x+5)-3x2

=4(x2+6x+10x+60)(x2+5x+12x+60)-3x2

=4(x2+16x+60)(x2+17x+60)-3x2

Đặt (x2+16x+60) = a

Ta có: 4a(a+x)-3x2

=4a2+4ax -3x2

=(2a)2 + 2.2a.x +x2 -4x2

= [ (2a) +x]2 - (2x)2
= [ (2a) +x -2x].[(2a) + x +2x)]

=[ (2a) -x].[(2a) + 3x)]
sau đó ta thế a = (x2+16x+60) rồi rút gọn là xong ^^

3 tháng 8 2015

Đã khó lại còn dài 

5 tháng 9 2017

dễ mà tự suy nghĩ và dùng máy tính bấm là ra thôi

28 tháng 9 2017

a)x3-7x+6

=x3+0x2-7x+6

=x3-x2+x2-x-6x+6

=(x3-x2)+(x2-x)-(6x-6)

=x2(x-1)+x(x-1)-6(x-1)

=(x-1)(x2+x-6)

=(x-1)(x2-2x+3x-6)

=(x-1)[x(x-2)+3(x-2)]

=(x-1)(x+3)(x-2)

24 tháng 7 2019

a, 3x^2 + 13x + 10  

= 3x^2 + 3x + 10x + 10 

= 3x(x + 1) + 10(x + 1)

= (3x + 10)(x + 1)

b, x^2 - 10x + 21

= x^2 - 3x - 7x + 21

= x(x - 3) - 7(x - 3)

= (x - 7)(x - 3)

c, 6x^2 - 5x + 1

= 6x^2 - 3x - 2x + 1

= 3x(2x - 1) - (2x - 1)

= (3x - 1)(2x - 1)

24 tháng 7 2019

Bạn đăng 1 lần nhiều bài như vậy làm người khác nản lắm đấy =) đơn giản bài rất dài mà mik cx ko chắc là bản thân mik có đc k hay ko nên phải nản vậy thôi :)

1a)\(3x^2+13x+10=3x^2+3x+10x+10\)

\(3x\left(x+1\right)+10\left(x+1\right)=\left(3x+10\right)\left(x+1\right)\)

b)\(x^2-10x+21=x^2-3x-7x+21\)

\(=x\left(x-3\right)-7\left(x-3\right)=\left(x-7\right)\left(x-3\right)\)

c)\(6x^2-5x+1=6x^2-3x-2x+1\)

\(=3x\left(2x-1\right)-\left(2x-1\right)=\left(3x-1\right)\left(2x-1\right)\)

13 tháng 6 2019

a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)

\(\Leftrightarrow14x=0\)

\(\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x = 0.

b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)

c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)

d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)

\(\Leftrightarrow41-10x=1\)

\(\Leftrightarrow-10x=40\)

\(\Leftrightarrow x=-4\)

Vậy pt có nghiệm duy nhất x = -4.

e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)

\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)

\(\Leftrightarrow8x=-13\)

\(\Leftrightarrow x=-\frac{13}{8}\)

Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

i)

$I=x^4+4x^3-x^2-14x+6$

$=(x^4+4x^4+4x^2)-5x^2-14x+6$

$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$

$=(x^2+2x-3)^2+(x^2-2x+1)-4$

$=(x-1)^2(x+3)^2+(x-1)^2-4$

$=(x-1)^2[(x+3)^2+1]-4\geq -4$

Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$

k)

$K=x^4+2x^3-10x^2-16x+45$

$=(x^4+2x^3+x^2)-11x^2-16x+45$

$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$

$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$

$=(x^2+x-6)^2+(x-2)^2+5$

$=[(x-2)(x+3)]^2+(x-2)^2+5$

$=(x-2)^2[(x+3)^2+1]+5\geq 5$

Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

g)

$G=x^4+4x^3+10x^2+12x+11$

$=(x^4+4x^3+4x^2)+6x^2+12x+11$

$=(x^2+2x)^2+6(x^2+2x)+11$

Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$

$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$

Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$

h)

$H=x^4-6x^3+x^2+24x+18$

$=(x^4-6x^3+9x^2)-8x^2+24x+18$

$=(x^2-3x)^2-8(x^2-3x)+18$

$=(x^2-3x)^2-8(x^2-3x)+16+2$

$=(x^2-3x-4)^2+2\geq 2$

Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$

2 tháng 10 2017

bạn hỏi từng câu 1 lần thôi cũng đc hỏi 1 lần 17 câu thì thánh nào vô kiên nhẫn trả lời hết đc ^^

2 tháng 10 2017

hoa mắt quá

17 tháng 10 2018

ko có thánh nhân nào rảnh làm hết đâu limdim

17 tháng 10 2018

giúp hộ 1 câu đi mà T^T