K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Đặt A = (a^2 + a - 1)^2 + 4a^2 + 4a = (a^2 + a - 1)^2 + 4(a^2 + a)
Đặt a^2 + a = x
=> A = (x - 1)^2 + 4x = x^2 + 2x + 1 = (x + 1)^2 = (a^2 + a + 1)^2

10 tháng 4 2020

Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:

Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)

27 tháng 7 2020

Viết rõ đề bài ra đc không ạ

27 tháng 7 2020

đấy là phân số

21 tháng 12 2019

a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)

\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)

b)  ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)

Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:

bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai 

\(A=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{\left(2a-1\right)^2}{2a+1}\cdot\dfrac{1}{\left(2a-1\right)\left(2a+1\right)}\right)\cdot\left(\dfrac{4a\left(a+1\right)+1}{4a^2}\right)-\dfrac{1}{2a}\)

\(=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{2a-1}{\left(2a+1\right)^2}\right)\cdot\dfrac{4a^2+4a+1}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(2a-1\right)\left(2a+1\right)}{\left(2a+1\right)^2}\cdot\dfrac{\left(2a+1\right)^2}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(4a^2-1\right)}{4a^2}-\dfrac{2a}{4a^2}\)

\(=\dfrac{-4a^2-2a+1}{4a^2}\)

21 tháng 7 2017

a2-b2-4a+4b

=(a-b)(a+b)-4(a-b)

=(a-b)(a+b-4)

b,

x3-3x2-3x+1

=(x+1)(x2-x+1)-3x(x+1)

=(x+1)(x2-4x+1)

c,sai đề

22 tháng 7 2017

mình trả lời câu a,b đã mình đang bận

a, a^2-b^2-4a+4b

=(a-b)(a+b)-4(a-b)

=(a-b)(a+b-4)

b, x^3-3x^2-3x+1

=x^3 +x^2-4x^2-4x+x+1

=x(x+1)-4x(x+1)+(x+1)

=(x+1)(x-4x+1)

31 tháng 3 2020

\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)

\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)

\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)

\(=\frac{-2a}{8a^2}\)

\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)

=> ĐFCM