Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\\ =1+\left(\dfrac{2a+2\sqrt{a}-\sqrt{a}-1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right).\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\dfrac{2\sqrt{a}-1+2a+2a\sqrt{a}-a-2a\sqrt{a}+\sqrt{a}-a}{-\left(\sqrt{a}-1\right)\left(1+\sqrt{a}+a\right)}\)
\(=1+\dfrac{2\sqrt{a}-1+0}{1+\sqrt{a}+a}.\dfrac{\sqrt{a}\left(-1\right)}{2\sqrt{a}-1}\\ =1+\dfrac{1}{1+\sqrt{a}+a}.\sqrt{a}.\left(-1\right)\)
\(=1-\dfrac{\sqrt{a}}{1+\sqrt{a}+a}\\ =\dfrac{1+\sqrt{a}+a-\sqrt{a}}{1+\sqrt{a}+a}\\ =\dfrac{1+a}{1+\sqrt{a}+a}\)
1/ đkxđ: a > 0; a khác 1
a/ A= (\(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\))\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)
\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{a-1}\)
\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{-4a}{a-1}=-\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\sqrt{a}}{a+1}\)
b/+) A = 4
\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}=4\)\(\Leftrightarrow2\sqrt{a}=4a+4\)
=> Không có gt a nào t/m
+) \(A>-6\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}>-6\)
\(\Leftrightarrow2\sqrt{a}>-6a-6\)
\(\Leftrightarrow6a+2\sqrt{a}+6>0\) (luôn đúng vì a > 0)
=> bpt có nghiệm với mọi a > 0
vậy........
c/ \(a^2-3=0\Leftrightarrow\left[{}\begin{matrix}a=\sqrt{3}\left(tm\right)\\a=-\sqrt{3}\left(ktmđkxđ\right)\end{matrix}\right.\)
Với a = \(\sqrt{3}\) ta có:
\(A=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2}=\sqrt{3}\left(\sqrt{3}-1\right)=3-\sqrt{3}\)
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
b) đề sai rồi nha
c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)
\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)
(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)
= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)
= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)
= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)
= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)
= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)
bài 2)
a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)
a: \(B=\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}+a-\sqrt{a}}{1-a\sqrt{a}}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)\left(2\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2a+\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\)
\(=\dfrac{2a\sqrt{a}+2a+2\sqrt{a}-a-\sqrt{a}-1-2a\sqrt{a}-a+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\)
\(=\dfrac{2\sqrt{a}-1}{\left(1-\sqrt{a}\right)\left(1+a+\sqrt{a}\right)}\)
\(A=1-\dfrac{2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
c: \(A-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}\)
\(=\dfrac{3a+3-2a-2\sqrt{a}-2}{3\left(a+\sqrt{a}+1\right)}=\dfrac{a-2\sqrt{a}+1}{3\left(a+\sqrt{a}+1\right)}>0\)
=>A>2/3