\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+.....+\frac{100}{2^{100}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Ta có :

\(A=\frac{1}{3}+\frac{2}{3^2}+......+\frac{100}{3^{100}}\) \(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)

\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)= 2A

Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\) \(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)

\(\Rightarrow3B-B=3-\frac{1}{3^{99}}=2B\) \(\Rightarrow B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2A=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)\(\Rightarrow A=\frac{3}{4}-\frac{1}{3^{99}.4}-\frac{100}{3^{100}}< \frac{3}{4}\Rightarrow\left(đpcm\right)\)

Ta có :

\(C=1+3+3^2+....+3^{100}\) \(\Rightarrow C-1=3+3^2+....+3^{100}\)

\(\Rightarrow3\left(C-1\right)=3^2+3^3+.....+3^{101}\)\(\Rightarrow3C-3-\left(C-1\right)=3^{101}-3\)

\(\Rightarrow2C-2=3^{101}-3\Rightarrow2C=3^{101}-1\)\(\Rightarrow C=\frac{3^{101}-1}{2}\)

Ta có :

\(D=2^{100}-2^{99}+2^{98}-.....-2\) \(\Rightarrow2D=2^{101}-2^{100}+2^{99}-.....-2^2\)

\(\Rightarrow2D+D=2^{101}-2=3D\) \(\Rightarrow D=\frac{2^{101}-2}{3}\)

25 tháng 7 2017

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(2A=1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

Ta thấy biểu thức trong dấu ngoặc nhỏ hơn 1/2 ( tự chứng minh ) nên 2A < 1 + 1/2 

\(\Rightarrow A< \frac{3}{4}\)

25 tháng 7 2017

\(C=1+3+3^2+3^3+...+3^{100}\)

\(3C=3+3^2+3^3+3^4+...+3^{101}\)

\(3C-C=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2C=3^{101}-1\)

\(C=\frac{3^{101}-1}{2}\)

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)