Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
a) \(\left(-5\right)+\left(-7\right)=-12\)
b) \(4.3^2-5.7+2^2=36-35+4=5\)
c) \(5^6:5^2-\left(36-18:3^2\right)=625-34=591\)
d) \(\left(-7\right)+\left(-11-8\right)+\left(-3\right)=-29\)
a/ -12
b/ 4. 9 - 5 . 7 + 4
= 36 - 35 + 4
= 1 + 4
= 5
C/ 15625 : 25 - (36 -18 : 9 )
= 625 - ( 36 - 2 )
= 625 - 34
= 591
D/ -7 -19 -3
= -29
a) A = 1 - 2 + 3 - 4 + ... + 99 - 100
=> A = ( 1 - 2) + ( 3 - 4 ) + ... + ( 99 - 100 )
=> A = ( -1 ) + ( -1 ) + ... + ( -1 )
Vì tổng A có 100 số hạng,2 số hạng tạo thành 1 cặp nên 100 số hạng tạo thành 50 cặp
=> A = ( -1 ) . 50
=> A = -50
b) B = 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
=> B = ( 1 + 3 - 5 - 7 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 393 + 395 - 397 - 399 )
=> B = ( -8 ) + ( -8 ) + ... + ( -8 )
Vì tổng B có 200 số hạng,4 số hạng tạo thành 1 cặp nên 200 số hạng tạo thành 50 cặp
=> B = ( -8 ) . 50
=> B = -400
c ) C = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100
=> C = ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )
=> C = 0 + 0 + ... + 0
=> C = 0
A = 1 - 2 + 3 - 4 + ..... + 99- 100
A = ( 1 -2 ) + ( 3 - 4 ) + ..... + ( 99 - 100 ) ( 50 nhóm )
A = 1 + 1 + .... + 1 ( 50 số 1 )
A = 1 . 50
A = 50
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
a ) 13/20
B)
C..........................................................
minh dang tính