Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+5+52+...+5101
A5=1*5+5*5+52*5+...+5101*5
A5=5+52+53+...+5102
A5-A=5+52+53+...+5102-1+5+52+...+5101
A4=5102-1
A=(5102-1):4
Vậy A=(5102-1):4
a)A= 1+5+5^2+...+5^101
=>5A=5+5^2+5^3+...+5^102
=>5A-A+(5+5^2+5^3+...+5^102)-(1+5+5^2+...+5^101)
=>4A=5^102-1
=>A=5^102-1/4
\(A=1+7+7^2+7^3+...+7^{200}\)
\(\Rightarrow7A=7+7^2+7^3+...+7^{201}\)
\(\Rightarrow7A-A=\left(7+7^2+...+7^{201}\right)-\left(1+7+7^2+...+7^{200}\right)\)
\(\Rightarrow6A=7^{201}-1\)
\(\Rightarrow A=\frac{7^{201}-1}{6}\)
\(B=5^1+5^3+5^5+...+5^{101}\)
\(\Rightarrow5^2B=5^3+5^5+5^7+...+5^{103}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{103}\right)-\left(5+5^3+...+5^{101}\right)\)
\(\Rightarrow24B=5^{103}-5\)
\(\Rightarrow B=\frac{5^{103}-5}{24}\)
\(D=1+a+a^2+a^3+...+a^n\)
\(\Rightarrow aD=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aD-D=\left(a+a^2+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)\)
\(\Rightarrow\left(a-1\right)D=a^{n+1}-1\)
\(\Rightarrow D=\frac{a^{n+1}-1}{a-1}\)
Ta có :
\(\left(5-1\right).B=\left(5-1\right).1+\left(5-1\right)5+....+\left(5-1\right).5^{100}\)
\(\Rightarrow4B=5-1+5^2-5+...+5^{101}-5^{100}\)
\(\Rightarrow4B=5^{101}-1\)
\(\Rightarrow A-4B=5^{101}-\left(5^{101}-1\right)=1\)
\(C=5^{100}+5^{101}+....+5^{150}\)
\(5C=5^{101}+5^{102}+...+5^{151}\)
\(4C=5^{151}-5^{100}\)
\(C=\frac{5^{151}-5^{100}}{4}\)
\(D=1+6+6^2+...+6^{20}\)
\(\Rightarrow6D=6+6^2+6^3+....+6^{21}\)
\(\Rightarrow5D=6^{21}-1\)
\(\Rightarrow5D+1=6^{21}\)
Vì \(6^{21}⋮6\) nên \(5D+1⋮6\)
\(A=7^1+7^3+7^5+...+7^{101}\)
\(7A=7^3+7^5+...+7^{102}\)
\(7A-A=7^{102}-7\)
\(6A=7^{102}-7\)
\(A=\frac{7^{102}-7}{6}\)
Vậy ....
Mời bạn tham khảo các link sau:
a),b),c):https://hoidap247.com/cau-hoi/214111
d):https://olm.vn/hoi-dap/detail/78449788871.html
a)A=3^0+3^1+3^2+3^3+...+3^2012
A=1+3+3^2+3^3+..+3^2012
3A=3+3^2+3^3+3^4+..+3^2013
3A-A=3+3^2+3^3+3^4+..+3^2013-1-3-3^2-3^3-...-3^2012
2A=3^2013-1
A=\(\frac{3^{2013}-1}{2}\)
B=3^2013
=> A>B
b) A=1+5+5^2+5^3+..+5^99+5^100
5A=5+5^2+5^3+5^4+...+5^100+5^101
5A-A=5+5^2+5^3+5^4+..+5^100+5^101-1-5-5^2-5^3-..-5^99-5^100
4A=5^101-1
A=\(\frac{5^{101}-1}{4}\)
B=5^101/4
=> A<B
Trả lời :
a) 43 . 101 - 64
= 64 . 101 - 64
= 64 . ( 101 - 1 )
= 64 . 100 = 6400
b) \(\frac{5^8}{5^5}+3^2.3^3-\left(30-19\right)^2\)
= 53 + 35 - 112
= 125 + 243 - 121
= 247
a) 43 .101 - 64 =
= 43 . 101 - 43
= 43 .( 101 - 1 )
= 43 .100
= 6400
\(A=2+2^3+2^5+2^7+2^9+...+2^{2009}\)
\(\Leftrightarrow\)\(4A=2^3+2^5+2^7+2^9+2^{11}+...+2^{2011}\)
\(\Leftrightarrow\)\(4A-A=\left(2^3+2^5+2^7+...+2^{2011}\right)-\left(2+2^3+2^5+...+2^{2009}\right)\)
\(\Leftrightarrow\)\(3A=2^{2011}-2\)
\(\Leftrightarrow\)\(A=\frac{2^{2011}-2}{3}\)
Ta có :
\(A=2+2^3+2^5+...+2^{2009}\)
\(4A=2^3+2^5+2^7+...+2^{2011}\)
\(4A-A=\left(2^3+2^5+2^7+...+2^{2011}\right)-\left(2+2^3+2^5+...+2^{2009}\right)\)
\(3A=2^{2011}-2\)
\(A=\frac{2^{2011}-2}{3}\)
Vậy \(A=\frac{2^{2011}-2}{3}\)
Câu b) dễ hơn nữa làm tương tư câu a) nhưng B nhân cho 2
Câu c) thì C nhân cho 5
Câu d) thì D nhân cho 169
A = 1+5+5^2+...+5^101
=>5A= 5+5^2+5^3+...+5^102
=>5A-A=(5+5^2+5^3+...+5^102)-(1+5^2+5^3+...+5^101)
=>4A=5^102-1
=>A=(5^102-1/)/4
Tích đúng hộ mk nhé